Suppr超能文献

用于癌症球体整合的导电微丝的双极电化学生长:导电生物电路的一个进步。

Bipolar electrochemical growth of conductive microwires for cancer spheroid integration: a step forward in conductive biological circuitry.

机构信息

Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.

School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.

出版信息

Sci Rep. 2024 Sep 9;14(1):21012. doi: 10.1038/s41598-024-71236-2.

Abstract

The field of bioelectronics is developing exponentially. There is now a drive to interface electronics with biology for the development of new technologies to improve our understanding of electrical forces in biology. This builds on our recently published work in which we show wireless electrochemistry could be used to grow bioelectronic functional circuitry in 2D cell layers. To date our ability to merge electronics with in situ with biology is 3D limited. In this study, we aimed to further develop the wireless electrochemical approach for the self-assembly of microwires in situ with custom-designed and fabricated 3D cancer spheroids. Unlike traditional electrochemical methods that rely on direct electrical connections to induce currents, our technique utilises bipolar electrodes that operate independently of physical wired connections. These electrodes enable redox reactions through the application of an external electric field. Specifically, feeder electrodes connected to a power supply generate an electric field, while the bipolar electrodes, not physically connected to the feeder electrodes, facilitate the reduction of silver ions from the solution. This process occurs upon applying a voltage across the feeder electrodes, resulting in the formation of self-assembled microwires between the cancer spheroids.Thereby, creating interlinked bioelectronic circuitry with cancer spheroids. We demonstrate that a direct current was needed to stimulate the growth of conductive microwires in the presence of cell spheroids. Microwire growth was successful when using 50 V (0.5 kV/cm) of DC applied to a single spheroid of approximately 800 µm in diameter but could not be achieved with alternating currents. This represents the first proof of the concept of using wireless electrochemistry to grow conductive structures with 3D mammalian cell spheroids.

摘要

生物电子学领域正在呈指数级发展。现在有一种趋势是将电子学与生物学结合起来,开发新技术以提高我们对生物学中电动力的理解。这是基于我们最近发表的工作,即在该工作中我们展示了无线电化学可以用于在 2D 细胞层中生长生物电子功能电路。迄今为止,我们将电子学与生物学结合的能力在 3D 上受到限制。在这项研究中,我们旨在进一步开发无线电化学方法,用于在定制设计和制造的 3D 癌症球体中就地自组装微丝。与传统的电化学方法不同,后者依赖于直接电连接来诱导电流,我们的技术利用独立于物理有线连接的双极电极。这些电极通过施加外部电场来实现氧化还原反应。具体来说,与电源连接的馈电电极产生电场,而不与馈电电极物理连接的双极电极则促进溶液中银离子的还原。当在馈电电极上施加电压时,会发生这种情况,从而导致在癌症球体之间形成自组装的微丝。从而,与癌症球体形成互联的生物电子电路。我们证明,在存在细胞球体的情况下,需要直流电来刺激导电微丝的生长。当将 50V(0.5kV/cm)的直流电施加到直径约为 800µm 的单个球体上时,微丝生长是成功的,但不能用交流电实现。这代表了使用无线电化学技术与 3D 哺乳动物细胞球体生长导电结构的第一个概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbbd/11383952/d0aad17c140a/41598_2024_71236_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验