Soubéran Aurélie, Jiguet-Jiglaire Carine, Toutain Soline, Morando Philippe, Baeza-Kallee Nathalie, Appay Romain, Boucard Céline, Graillon Thomas, Meyer Mikael, Farah Kaissar, Figarella-Branger Dominique, Tabouret Emeline, Tchoghandjian Aurélie
APHM, CHU Timone, Service de Neurooncologie, Marseille, France.
Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-Oncologie, Plateforme PETRA"TECH," Marseille, France.
Neuro Oncol. 2025 Feb 10;27(2):415-429. doi: 10.1093/neuonc/noae184.
The generation of patient avatars is critically needed in neuro-oncology for treatment prediction and preclinical therapeutic development. Our objective was to develop a fast, reproducible, low-cost, and easy-to-use method of tumoroids generation and analysis, efficient for all types of brain tumors, primary and metastatic.
Tumoroids were generated from 89 patients: 81 primary tumors including 77 gliomas, and 8 brain metastases. Tumoroids morphology and cellular and molecular characteristics were compared with the ones of the parental tumor by using histology, methylome profiling, pTERT mutations, and multiplexed spatial immunofluorescences. Their cellular stability over time was validated by flow cytometry. Therapeutic sensitivity was evaluated and predictive factors of tumoroid generation were analyzed.
All the tumoroids analyzed had similar histological (n = 21) and molecular features (n = 7) to the parental tumor. The median generation time was 5 days. The success rate was 65 %: it was higher for high-grade gliomas and brain metastases versus IDH mutated low-grade gliomas. For high-grade gliomas, neither other clinical, neuro-imaging, histological nor molecular factors were predictive of tumoroid generation success. The cellular organization inside tumoroids analyzed by MACSima revealed territories dedicated to specific cell subtypes. Finally, we showed the correlation between tumoroid and patient treatment responses to radio-chemotherapy and their ability to respond to immunotherapy thanks to a dedicated and reproducible 3D analysis workflow.
Patient-derived tumoroid model that we developed offers a robust, user-friendly, low-cost, and reproducible preclinical model valuable for therapeutic development of all types of primary or metastatic brain tumors, allowing their integration into forthcoming early-phase clinical trials.
在神经肿瘤学中,迫切需要生成患者化身用于治疗预测和临床前治疗开发。我们的目标是开发一种快速、可重复、低成本且易于使用的肿瘤样物生成和分析方法,对所有类型的原发性和转移性脑肿瘤均有效。
从89例患者中生成肿瘤样物:81例原发性肿瘤,包括77例胶质瘤和8例脑转移瘤。通过组织学、甲基化组分析、pTERT突变和多重空间免疫荧光,将肿瘤样物的形态以及细胞和分子特征与其亲本肿瘤进行比较。通过流式细胞术验证其随时间的细胞稳定性。评估治疗敏感性并分析肿瘤样物生成的预测因素。
所有分析的肿瘤样物在组织学(n = 21)和分子特征(n = 7)方面与其亲本肿瘤相似。中位生成时间为5天。成功率为65%:高级别胶质瘤和脑转移瘤的成功率高于异柠檬酸脱氢酶(IDH)突变的低级别胶质瘤。对于高级别胶质瘤,其他临床、神经影像学、组织学或分子因素均不能预测肿瘤样物生成的成功。通过MACSima分析的肿瘤样物内部的细胞组织显示了专用于特定细胞亚型的区域。最后,我们通过专门且可重复的三维分析工作流程,展示了肿瘤样物与患者对放化疗的治疗反应之间的相关性以及它们对免疫治疗的反应能力。
我们开发的患者来源肿瘤样物模型提供了一种强大、用户友好、低成本且可重复的临床前模型,对所有类型的原发性或转移性脑肿瘤的治疗开发具有重要价值,可将其纳入即将开展的早期临床试验。