Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Adv Sci (Weinh). 2024 Nov;11(41):e2404926. doi: 10.1002/advs.202404926. Epub 2024 Sep 10.
Selective inhibition of the transcription elongation factor (P-TEFb) complex represents a promising approach in cancer therapy, yet CDK9 inhibitors (CDK9i) are currently limited primarily to certain hematological malignancies. Herein, while initial responses to CDK9-targeted therapies are observed in vitro across various KRAS-mutant cancer types, their efficacy is far from satisfactory in nude mouse xenograft models. Mechanistically, CDK9 inhibition leads to compensatory activation of ERK-MYC signaling, accompanied by the recovery of proto-oncogenes, upregulation of immediate early genes (IEGs), stimulation of the complement C1r-C3-C3a cascade, and induction of tumor immunosuppression. The "paradoxical" regulation of PP2Ac activity involving the CDK9/Src interplay contributes to ERK phosphorylation and pause-release of RNA polymerase II (Pol II). Co-targeting of CDK9 and KRAS/MAPK signaling pathways eliminates ERK-MYC activation and prevents feedback activation mediated by receptor tyrosine kinases, leading to more effective control of KRAS-mutant cancers and overcoming KRASi resistance. Moreover, modulating the tumor microenvironment (TME) by complement system intervention enhances the response to CDK9i and potently suppresses tumor growth. Overall, the preclinical investigations establish a robust framework for conducting clinical trials employing KRASi/SOS1i/MEKi or immunomodifiers in combination with CDK9i to simultaneously target cancer cells and their crosstalk with the TME, thereby yielding improved responses in KRAS-mutant patients.
选择性抑制转录延伸因子(P-TEFb)复合物代表了癌症治疗的一种有前途的方法,但目前 CDK9 抑制剂(CDK9i)主要局限于某些血液恶性肿瘤。在此,尽管在各种 KRAS 突变型癌症类型的体外观察到对 CDK9 靶向治疗的初始反应,但它们在裸鼠异种移植模型中的疗效远不能令人满意。从机制上讲,CDK9 抑制导致 ERK-MYC 信号的代偿激活,伴随着原癌基因的恢复、即刻早期基因(IEGs)的上调、补体 C1r-C3-C3a 级联的刺激以及肿瘤免疫抑制的诱导。涉及 CDK9/Src 相互作用的 PP2Ac 活性的“矛盾”调节有助于 ERK 磷酸化和 RNA 聚合酶 II(Pol II)的暂停释放。CDK9 和 KRAS/MAPK 信号通路的共同靶向消除了 ERK-MYC 激活,并阻止了受体酪氨酸激酶介导的反馈激活,从而更有效地控制 KRAS 突变型癌症并克服 KRASi 耐药性。此外,通过补体系统干预调节肿瘤微环境(TME)增强了对 CDK9i 的反应,并有力地抑制了肿瘤生长。总体而言,临床前研究为临床试验奠定了坚实的基础,这些临床试验采用 KRASi/SOS1i/MEKi 或免疫调节剂与 CDK9i 联合使用,以同时靶向癌细胞及其与 TME 的相互作用,从而提高 KRAS 突变型患者的反应率。