Suppr超能文献

将一氧化碳电解槽的面积从实验室规模扩大到中试规模。

Scaling CO Electrolyzer Cell Area from Bench to Pilot.

作者信息

Nelson Vivian E, O'Brien Colin P, Edwards Jonathan P, Liu Shijie, Gabardo Christine M, Sargent Edward H, Sinton David

机构信息

Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada.

Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 25;16(38):50818-50825. doi: 10.1021/acsami.4c11103. Epub 2024 Sep 10.

Abstract

To contribute meaningfully to carbon dioxide (CO) emissions reduction, CO electrolyzer technology will need to scale immensely. Bench-scale electrolyzers are the norm, with active areas <5 cm. However, cell areas on the order of 100s or 1000s of cm will be required for industrial deployment. Here, we study the effects of increasing cell area, scaling over 2 orders of magnitude from a 5 cm lab-scale cell to an 800 cm pilot plant-scale cell. A direct scaling of the bench-scale cell architecture to the larger area results in a ∼20% drop in ethylene (CH) selectivity and an increase in the parasitic hydrogen (H) evolution reaction (HER). We instrument an 800 cm electrolyzer cell to serve as a diagnostic tool and determine that nonuniformities in electrode compression and flow-influenced local CO availability are the key drivers of performance loss upon scaling. Machining of an initial 800 cm cell results in a standard deviation in MEA compression that is 7-fold that of a similarly produced 5 cm cell (0.009 mm). Using these findings, we redesign an 800 cm cell for compression tolerance and increased CO transport and achieve an H FE in the revised 800 cm cell similar to that of the 5 cm case (16% at 200 mA cm). These results demonstrate that by ensuring uniform compression and fluid flow, the CO electrolyzer area can be scaled over 100-fold and retain CH selectivity (within 10% of small-scale selectivity).

摘要

为了对减少二氧化碳(CO₂)排放做出有意义的贡献,CO₂电解槽技术需要大幅扩大规模。实验室规模的电解槽是常态,有效面积小于5平方厘米。然而,工业应用需要面积在数百或数千平方厘米量级的电解槽。在这里,我们研究了扩大电解槽面积的影响,将面积从5平方厘米的实验室规模电解槽扩大两个数量级至800平方厘米的中试工厂规模电解槽。将实验室规模电解槽的架构直接扩大到更大面积会导致乙烯(C₂H₄)选择性下降约20%,并使寄生析氢反应(HER)增加。我们使用一个800平方厘米的电解槽作为诊断工具,确定电极压缩不均匀和流动影响的局部CO₂可用性是扩大规模后性能损失的关键驱动因素。制造一个初始的800平方厘米电解槽会导致膜电极组件(MEA)压缩的标准偏差是同样制造的5平方厘米电解槽的7倍(0.009毫米)。利用这些发现,我们重新设计了一个800平方厘米的电解槽以提高压缩耐受性并增强CO₂传输,在改进后的8平方厘米电解槽中实现了与5平方厘米电解槽相似的析氢过电位(在200 mA cm²时为16%)。这些结果表明,通过确保均匀压缩和流体流动,CO₂电解槽面积可以扩大100倍以上,并保持C₂H₄选择性(在小规模选择性的10%以内)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验