Luo Deng, Alsuwaykit Zainab, Khan Dawar, Strnad Ondrej, Isenberg Tobias, Viola Ivan
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):558-568. doi: 10.1109/TVCG.2024.3456404. Epub 2024 Nov 25.
We introduce DiffFit, a differentiable algorithm for fitting protein atomistic structures into an experimental reconstructed Cryo-Electron Microscopy (cryo-EM) volume map. In structural biology, this process is necessary to semi-automatically composite large mesoscale models of complex protein assemblies and complete cellular structures that are based on measured cryo-EM data. The current approaches require manual fitting in three dimensions to start, resulting in approximately aligned structures followed by an automated fine-tuning of the alignment. The DiffFit approach enables domain scientists to fit new structures automatically and visualize the results for inspection and interactive revision. The fitting begins with differentiable three-dimensional (3D) rigid transformations of the protein atom coordinates followed by sampling the density values at the atom coordinates from the target cryo-EM volume. To ensure a meaningful correlation between the sampled densities and the protein structure, we proposed a novel loss function based on a multi-resolution volume-array approach and the exploitation of the negative space. This loss function serves as a critical metric for assessing the fitting quality, ensuring the fitting accuracy and an improved visualization of the results. We assessed the placement quality of DiffFit with several large, realistic datasets and found it to be superior to that of previous methods. We further evaluated our method in two use cases: automating the integration of known composite structures into larger protein complexes and facilitating the fitting of predicted protein domains into volume densities to aid researchers in identifying unknown proteins. We implemented our algorithm as an open-source plugin (github.com/nanovis/DiffFit) in ChimeraX, a leading visualization software in the field. All supplemental materials are available at osf. io/5tx4q.
我们介绍了DiffFit,这是一种用于将蛋白质原子结构拟合到实验重建的冷冻电子显微镜(cryo-EM)体积图中的可微算法。在结构生物学中,此过程对于基于实测冷冻电镜数据半自动合成复杂蛋白质组装体和完整细胞结构的大型中尺度模型是必要的。当前的方法首先需要在三维空间中进行手动拟合,得到大致对齐的结构,然后对对齐进行自动微调。DiffFit方法使领域科学家能够自动拟合新结构,并可视化结果以进行检查和交互式修订。拟合从蛋白质原子坐标的可微三维(3D)刚体变换开始,然后在目标冷冻电镜体积的原子坐标处对密度值进行采样。为了确保采样密度与蛋白质结构之间有意义的相关性,我们提出了一种基于多分辨率体积阵列方法和利用负空间的新型损失函数。该损失函数作为评估拟合质量的关键指标,确保了拟合精度和结果可视化的改善。我们使用几个大型的实际数据集评估了DiffFit的放置质量,发现它优于以前的方法。我们在两个用例中进一步评估了我们的方法:将已知复合结构自动整合到更大的蛋白质复合物中,以及促进将预测的蛋白质结构域拟合到体积密度中,以帮助研究人员识别未知蛋白质。我们将算法作为开源插件(github.com/nanovis/DiffFit)在该领域领先的可视化软件ChimeraX中实现。所有补充材料可在osf.io/5tx4q获取。