Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
J Hazard Mater. 2024 Nov 5;479:135771. doi: 10.1016/j.jhazmat.2024.135771. Epub 2024 Sep 6.
The burgeoning incidence of thyroid cancer globally necessitates a deeper understanding of its etiological factors. Emerging research suggests a link to environmental contaminants, notably perfluoroalkyl carboxylates (PFACs). This study introduces a novel biomaterial-based approach for modeling thyroid cancer and assesses PFAC exposure-related health risks. This biomaterial-centric methodology enabled a realistic simulation of long-term, low-dose PFAC exposure, yielding critical insights into their carcinogenic potential. Initially, the no observed adverse effect level concentration of 10 μM for four different PFACs, determined using cytotoxicity tests in 2D cell cultures, was employed with thyroid cancer organoids. Specifically, these organoids were exposed to 10 μM of PFACs, refreshed every 3 days over a period of 21 days. The impact of these PFACs on the organoids was assessed using western blotting and immunofluorescence, complemented by high-content screening imaging. This evaluation focused on thyroid-specific biomarkers, epithelial-mesenchymal transition markers, and the proliferation marker Ki-67. Findings indicated significant alterations in these markers, particularly with long-chain PFACs, suggesting an increased risk of thyroid cancer progression and metastasis upon prolonged exposure. This research advances our understanding of thyroid cancer pathology within the context of environmental health risks by investigating the effects of low-dose, long-term exposure to PFACs on human thyroid cancer organoids. The findings reveal the potential carcinogenic risk associated with these substances, emphasizing the urgent need for stricter regulatory controls.
全球范围内甲状腺癌的发病率不断上升,这使得我们需要更深入地了解其病因。新的研究表明,甲状腺癌的病因与环境污染物有关,尤其是全氟烷基羧酸酯(PFACs)。本研究提出了一种基于生物材料的新方法来模拟甲状腺癌,并评估 PFAC 暴露相关的健康风险。这种以生物材料为中心的方法能够逼真地模拟长期、低剂量的 PFAC 暴露,从而深入了解其致癌潜力。首先,我们使用二维细胞培养中的细胞毒性试验确定了四种不同的 PFAC 的无观察不良效应浓度(NOAEL)为 10 μM,并将其用于甲状腺癌细胞球体。具体来说,这些细胞球体在 21 天的时间里,每隔 3 天接受 10 μM 的 PFAC 处理。我们使用 Western blot 和免疫荧光法评估了这些 PFAC 对细胞球体的影响,同时还进行了高内涵筛选成像。该评估集中在甲状腺特异性生物标志物、上皮-间充质转化标志物和增殖标志物 Ki-67 上。结果表明,这些标志物发生了显著变化,特别是长链 PFACs,这表明在长时间暴露下,甲状腺癌进展和转移的风险增加。本研究通过调查低剂量、长期暴露于 PFACs 对人甲状腺癌细胞球体的影响,在环境健康风险背景下深入了解了甲状腺癌的发病机制。研究结果揭示了这些物质的潜在致癌风险,强调了迫切需要更严格的监管控制。