Suppr超能文献

血红素加氧酶-1 高表达促进巨噬细胞源性泡沫细胞中的铁死亡,加剧斑块不稳定性。

High expression levels of haem oxygenase-1 promote ferroptosis in macrophage-derived foam cells and exacerbate plaque instability.

机构信息

Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.

Department of Vascular Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China.

出版信息

Redox Biol. 2024 Oct;76:103345. doi: 10.1016/j.redox.2024.103345. Epub 2024 Sep 7.

Abstract

Plaque rupture with consequent thrombosis is the leading cause of acute cardiovascular events, during which macrophage death is a hallmark. Ferroptosis is a pivotal intermediate link between early and advanced atherosclerosis. Existing evidence indicates the involvement of macrophage ferroptosis in plaque vulnerability; however, the exact mechanism remains elusive. The aim of this study was to explore key ferroptosis-related genes (FRGs) involved in plaque progression and the underlying molecular mechanisms involved. The expression landscape of FRGs was obtained from atherosclerosis-related GEO datasets. Molecular mechanism studies of ferroptosis were performed using bone marrow-derived macrophages (BMDMs) and macrophage-derived foam cells (MDFCs). Bioinformatics analysis and immunohistochemistry revealed that macrophage haem oxygenase-1 (HMOX1) is the key FRG involved in plaque destabilization. Hypoxic conditions induced a significant increase in Hmox1 expression in MDFCs but not in macrophages. In addition, the beneficial or deleterious effects of Hmox1 were dependent on the degree of Hmox1 induction. Hmox1 overexpression drove inflammatory responses and ferroptotic oxidative stress in MDFCs and aggravated the plaque burden in atherosclerotic model mice. Further mechanistic investigations demonstrated that hypoxia-mediated degradation of egl-9 family hypoxia-inducible factor 3 (Egln3) stabilized Hif1a, which subsequently promoted Hmox1 transcription. Our findings suggest that high Hmox1 expression under hypoxia is deleterious to MDFC viability and plaque stability, providing a reference for the management of acute cardiovascular events.

摘要

斑块破裂导致随后的血栓形成是急性心血管事件的主要原因,在此过程中,巨噬细胞死亡是一个标志。铁死亡是早期和晚期动脉粥样硬化之间的关键中间环节。现有证据表明,巨噬细胞铁死亡参与斑块易损性;然而,确切的机制仍不清楚。本研究旨在探讨参与斑块进展的关键铁死亡相关基因(FRGs)及其潜在的分子机制。从动脉粥样硬化相关的 GEO 数据集获得 FRGs 的表达图谱。使用骨髓来源的巨噬细胞(BMDMs)和巨噬细胞源性泡沫细胞(MDFCs)进行铁死亡的分子机制研究。生物信息学分析和免疫组织化学显示,巨噬细胞血红素加氧酶-1(HMOX1)是参与斑块不稳定的关键 FRG。低氧条件下,MDFC 中 Hmox1 的表达显著增加,但巨噬细胞中 Hmox1 的表达没有增加。此外,Hmox1 的有益或有害作用取决于 Hmox1 诱导的程度。Hmox1 的过表达驱动 MDFC 中的炎症反应和铁死亡氧化应激,并加重动脉粥样硬化模型小鼠的斑块负担。进一步的机制研究表明,低氧介导的 Egl-9 家族低氧诱导因子 3(Egln3)降解稳定了 Hif1a,从而促进了 Hmox1 的转录。我们的研究结果表明,低氧下高 Hmox1 表达对 MDFC 活力和斑块稳定性有害,为急性心血管事件的管理提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a6/11414708/e39badaee1fb/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验