Peng Xiang, Sun Bin, Tang Chaohui, Shi Chengyu, Xie Xianwei, Wang Xueyu, Jiang Dingsheng, Li Shuo, Jia Ying, Wang Yani, Tang Huifang, Zhong Shan, Piao Minghui, Cui Xiuru, Zhang Shenghao, Wang Fan, Wang Yan, Na Ruisi, Huang Renping, Jiang Yanan, Zhang Weihua, Xu Juan, Lin Kaiyang, Guo Junli, Pan Zhenwei, Wang Kun, Zhao Qiang, Liu Huibin, Yu Bo, Ji Yong, Zhang Jian, Li Shuijie, Tian Jinwei
Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150081, China.
College of Pharmacy, Harbin Medical University, Harbin 150081, China.
Dev Cell. 2025 Apr 7;60(7):1070-1086.e8. doi: 10.1016/j.devcel.2024.12.011. Epub 2024 Dec 27.
Advanced atherosclerosis is the pathological basis for acute cardiovascular events, with significant residual risk of recurrent clinical events despite contemporary treatment. The death of foamy macrophages is a main contributor to plaque progression, but the underlying mechanisms remain unclear. Bulk and single-cell RNA sequencing demonstrated that massive iron accumulation in advanced atherosclerosis promoted foamy macrophage ferroptosis, particularly in low expression of triggering receptor expressed on myeloid cells 2 (TREM2) foamy macrophages. This cluster exhibits metabolic characteristics with low oxidative phosphorylation (OXPHOS), increasing ferroptosis sensitivity. Mechanically, upregulated heme oxygenase 1 (HMOX1)-lactate dehydrogenase B (LDHB) interaction enables Lon peptidase 1 (LONP1) to degrade mitochondrial transcription factor A (TFAM), leading to mitochondrial dysfunction and ferroptosis. Administration of the mitochondria-targeted reactive oxygen species (ROS) scavenger MitoTEMPO (mitochondrial-targeted TEMPO) or LONP1 inhibitor bortezomib restored mitochondrial homeostasis in foamy macrophages and alleviated atherosclerosis. Collectively, our study elucidates the cellular and molecular mechanism of foamy macrophage ferroptosis, offering potential therapeutic strategies for advanced atherosclerosis.
晚期动脉粥样硬化是急性心血管事件的病理基础,尽管采用了现代治疗方法,但仍存在复发性临床事件的显著残余风险。泡沫巨噬细胞的死亡是斑块进展的主要原因,但其潜在机制仍不清楚。批量和单细胞RNA测序表明,晚期动脉粥样硬化中大量铁积累促进了泡沫巨噬细胞铁死亡,特别是在髓样细胞2(TREM2)低表达的泡沫巨噬细胞中。该簇表现出低氧化磷酸化(OXPHOS)的代谢特征,增加了铁死亡敏感性。机制上,上调的血红素加氧酶1(HMOX1)-乳酸脱氢酶B(LDHB)相互作用使Lon肽酶1(LONP1)能够降解线粒体转录因子A(TFAM),导致线粒体功能障碍和铁死亡。给予线粒体靶向的活性氧(ROS)清除剂MitoTEMPO(线粒体靶向的TEMPO)或LONP1抑制剂硼替佐米可恢复泡沫巨噬细胞中的线粒体稳态并减轻动脉粥样硬化。总之,我们的研究阐明了泡沫巨噬细胞铁死亡的细胞和分子机制,为晚期动脉粥样硬化提供了潜在的治疗策略。