Suppr超能文献

IDX(一种媒介识别工具)中早期部署算法的蚊虫种类识别准确性。

Mosquito species identification accuracy of early deployed algorithms in IDX, A vector identification tool.

作者信息

Gupta Khushi Anil, Ikonomidou Vasiliki N, Glancey Margaret, Faiman Roy, Talafha Sameerah, Ford Tristan, Jenkins Thomas, Goodwin Autumn

机构信息

Vectech, Baltimore, MD, USA.

Vectech, Baltimore, MD, USA.

出版信息

Acta Trop. 2024 Dec;260:107392. doi: 10.1016/j.actatropica.2024.107392. Epub 2024 Sep 8.

Abstract

Mosquito-borne diseases continue to pose a great threat to global public health systems due to increased insecticide resistance and climate change. Accurate vector identification is crucial for effective control, yet it presents significant challenges. IDX - an automated computer vision-based device capable of capturing mosquito images and outputting mosquito species ID has been deployed globally resulting in algorithms currently capable of identifying 53 mosquito species. In this study, we evaluate deployed performance of the IDX mosquito species identification algorithms using data from partners in the Southeastern United States (SE US) and Papua New Guinea (PNG) in 2023 and 2024. This preliminary assessment indicates continued improvement of the IDX mosquito species identification algorithms over the study period for individual species as well as average regional accuracy with macro average recall improving from 55.3 % [Confidence Interval (CI) 48.9, 61.7] to 80.2 % [CI 77.3, 84.9] for SE US, and 84.1 % [CI 75.1, 93.1] to 93.6 % [CI 91.6, 95.6] for PNG using a CI of 90 %. This study underscores the importance of algorithm refinement and dataset expansion covering more species and regions to enhance identification systems thereby reducing the workload for human experts, addressing taxonomic expertise gaps, and improving vector control efforts.

摘要

由于杀虫剂抗性增加和气候变化,蚊媒疾病继续对全球公共卫生系统构成重大威胁。准确识别病媒对于有效控制至关重要,但这也带来了重大挑战。IDX是一种基于计算机视觉的自动化设备,能够捕捉蚊子图像并输出蚊子种类识别结果,已在全球范围内部署,其算法目前能够识别53种蚊子。在本研究中,我们利用来自美国东南部(SE US)和巴布亚新几内亚(PNG)的合作伙伴在2023年和2024年的数据,评估IDX蚊子种类识别算法的实际应用性能。这项初步评估表明,在研究期间,IDX蚊子种类识别算法在单个物种以及区域平均准确率方面持续改进,美国东南部的宏观平均召回率从55.3%[置信区间(CI)48.9, 61.7]提高到80.2%[CI 77.3, 84.9],巴布亚新几内亚从84.1%[CI 75.1, 93.1]提高到93.6%[CI 91.6, 95.6],置信区间为90%。本研究强调了算法优化和数据集扩展的重要性,涵盖更多物种和区域以增强识别系统,从而减轻人类专家的工作量,弥补分类学专业知识差距,并改善病媒控制工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验