Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States.
ACS Synth Biol. 2024 Sep 20;13(9):2926-2937. doi: 10.1021/acssynbio.4c00317. Epub 2024 Sep 10.
Timely surveillance of airborne pathogens is essential to preventing the spread of infectious diseases and safeguard human health. Methods for sensitive, efficient, and cost-effective detection of airborne viruses are needed. With advances in synthetic biology, whole-cell biosensors have emerged as promising platforms for environmental monitoring and medical diagnostics. However, the current design paradigm of whole-cell biosensors is mostly based on intracellular detection of analytes that can transport across the cell membrane, which presents a critical challenge for viral pathogens and large biomolecules. To address this challenge, we developed a new type of whole-cell biosensor by expressing and displaying VHH-based quenchbody (Q-body) on the surface of the yeast for simple one-step detection of influenza A (H1N1) virus. Seventeen VHH antibody fragments targeting the hemagglutinin protein H1N1-HA were displayed on the yeast cells and screened for the H1N1-HA binding affinity. The functionally displayed VHHs were selected to create surface-displayed Q-body biosensors. The surface-displayed Q-body exhibiting the highest quenching and dequenching efficiency was identified. The biosensor quantitatively detected H1N1-HA in a range from 0.5 to 16 μg/mL, with a half-maximal concentration of 2.60 μg/mL. The biosensor exhibited high specificity for H1N1-HA over other hemagglutinin proteins from various influenza A virus subtypes. Moreover, the biosensor succeeded in detecting the H1N1 virus at concentrations from 2.4 × 10 to 1.5 × 10 PFU/mL. The results from this study demonstrated a new whole-cell biosensor design that circumvents the need for transport of analytes into biosensor cells, enabling efficient detection of the target virus particles.
及时监测空气传播病原体对于防止传染病传播和保障人类健康至关重要。需要开发出敏感、高效和具有成本效益的空气传播病毒检测方法。随着合成生物学的发展,全细胞生物传感器已成为环境监测和医学诊断的有前途的平台。然而,目前全细胞生物传感器的设计范式主要基于可以穿过细胞膜的细胞内分析物的检测,这对病毒病原体和大生物分子提出了重大挑战。为了解决这一挑战,我们通过在酵母表面表达和展示基于 VHH 的淬灭体 (Q-body),开发了一种新型全细胞生物传感器,用于简单的一步检测甲型流感 (H1N1) 病毒。针对血凝素蛋白 H1N1-HA 的 17 个 VHH 抗体片段在酵母细胞上展示并筛选出与 H1N1-HA 的结合亲和力。选择功能展示的 VHH 来创建表面展示的 Q-body 生物传感器。鉴定出表现出最高猝灭和解猝灭效率的表面展示 Q-body。该生物传感器在 0.5 至 16 μg/mL 的范围内定量检测 H1N1-HA,半最大浓度为 2.60 μg/mL。该生物传感器对 H1N1-HA 具有高度特异性,而对来自各种甲型流感病毒亚型的其他血凝素蛋白没有特异性。此外,该生物传感器成功地以 2.4×10 至 1.5×10 PFU/mL 的浓度检测到 H1N1 病毒。这项研究的结果展示了一种新的全细胞生物传感器设计,该设计无需将分析物运输到生物传感器细胞中,从而能够高效地检测目标病毒颗粒。