Suppr超能文献

亚免疫金-SEM 揭示了亚膜表位的纳米尺度分布。

SUB-immunogold-SEM reveals nanoscale distribution of submembranous epitopes.

机构信息

Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.

出版信息

Nat Commun. 2024 Sep 10;15(1):7864. doi: 10.1038/s41467-024-51849-x.

Abstract

Electron microscopy paired with immunogold labeling is the most precise tool for protein localization. However, these methods are either cumbersome, resulting in small sample numbers and restricted quantification, or limited to identifying protein epitopes external to the membrane. Here, we introduce SUB-immunogold-SEM, a scanning electron microscopy technique that detects intracellular protein epitopes proximal to the membrane. We identify four critical sample preparation factors contributing to the method's sensitivity. We validate its efficacy through precise localization and high-powered quantification of cytoskeletal and transmembrane protein distribution. We evaluate the capabilities of SUB-immunogold-SEM on cells with highly differentiated apical surfaces: (i) auditory hair cells, revealing the presence of nanoscale MYO15A-L rings at the tip of stereocilia; and (ii) respiratory multiciliate cells, mapping the distribution of the SARS-CoV-2 receptor ACE2 along the motile cilia. SUB-immunogold-SEM extends the application of SEM-based nanoscale protein localization to the detection of intracellular epitopes on the exposed surfaces of any cell.

摘要

电子显微镜结合免疫金标记是蛋白质定位最精确的工具。然而,这些方法要么繁琐,导致样本数量少且定量受限,要么仅限于识别膜外的蛋白质表位。在这里,我们引入 SUB-免疫金-SEM,一种检测靠近膜的细胞内蛋白质表位的扫描电子显微镜技术。我们确定了四个关键的样本制备因素,这些因素有助于提高方法的灵敏度。我们通过对细胞骨架和跨膜蛋白分布的精确定位和高功率定量来验证其功效。我们评估了 SUB-免疫金-SEM 在具有高度分化的顶端表面的细胞上的能力:(i) 听觉毛细胞,揭示了在静纤毛尖端存在纳米尺度的 MYO15A-L 环;和 (ii) 呼吸多纤毛细胞,绘制了 SARS-CoV-2 受体 ACE2 沿着运动纤毛的分布。SUB-免疫金-SEM 将基于 SEM 的纳米尺度蛋白质定位的应用扩展到任何细胞暴露表面上的细胞内表位的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a9a/11387508/97906a5acee0/41467_2024_51849_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验