Suppr超能文献

基于 WebGIS 的猪巴氏杆菌病多准则决策分析预测系统的开发与应用。

Development and application of a WebGIS-based prediction system for multi-criteria decision analysis of porcine pasteurellosis.

机构信息

College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China.

Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, People's Republic of China.

出版信息

Sci Rep. 2024 Sep 10;14(1):21082. doi: 10.1038/s41598-024-72350-x.

Abstract

Porcine pasteurellosis is an infectious disease caused by Pasteurella multocida (P. multocida), which seriously endangers the healthy development of pig breeding industry. Early detection of disease transmission in animals is a crucial early warning for humans. Therefore, predicting risk areas for disease is essential for public health authorities to adopt preventive measures and control strategies against diseases. In this study, we developed a predictive model based on multi-criteria decision analysis (MCDA) and assessed risk areas for porcine pasteurellosis in the Chinese mainland. By using principal component analysis, the weights of seven spatial risk factors were determined. Fuzzy membership function was used to standardize all risk factors, and weight linear combination was used to create a risk map. The sensitivity of the risk map was analyzed by calculating the mean of absolute change rates of risk factors, as well as calculating an uncertainty map. The results showed that risk areas for porcine pasteurellosis were predicted to be locate in the south-central of the Chinese mainland, including Sichuan, Chongqing, Guangdong, and Guangxi. The maximum standard deviation of the uncertain map was less than 0.01and the ROC results showed that the prediction model has moderate predictive performance with the area under the curve (AUC) value of 0.80 (95% CI 0.75-0.84). Based on the above process, MCDA was combined with WebGIS technology to construct a system for predicting risk areas of porcine pasteurellosis. Risk factor data was directly linked to the developed model, providing decision support for disease prevention and control through monthly updates.

摘要

猪巴氏杆菌病是由多杀性巴氏杆菌(Pasteurella multocida,P. multocida)引起的传染病,严重危害养猪业的健康发展。动物疾病传播的早期检测对人类是一个重要的预警。因此,预测疾病的风险区域对于公共卫生当局采取疾病预防措施和控制策略至关重要。在本研究中,我们基于多准则决策分析(Multi-criteria Decision Analysis,MCDA)开发了一种预测模型,并评估了中国大陆地区猪巴氏杆菌病的风险区域。通过主成分分析确定了七个空间风险因素的权重。使用模糊隶属函数对所有风险因素进行标准化,并通过权重线性组合创建风险图。通过计算风险因素的平均绝对变化率以及绘制不确定图来分析风险图的敏感性。结果表明,猪巴氏杆菌病的风险区域预测位于中国大陆的中南部,包括四川、重庆、广东和广西。不确定图的最大标准偏差小于 0.01,ROC 结果表明预测模型具有中等的预测性能,曲线下面积(Area Under the Curve,AUC)值为 0.80(95%置信区间 0.75-0.84)。基于上述过程,将 MCDA 与 WebGIS 技术相结合,构建了一个预测猪巴氏杆菌病风险区域的系统。风险因素数据直接与开发的模型相关联,通过每月更新为疾病预防和控制提供决策支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa9/11387481/a0699d9ea2b9/41598_2024_72350_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验