Yang Yifan, Liu Xiaoyu, Jin Qiao, Huang Furong, Lu Zhiyong
National Institutes of Health (NIH), National Library of Medicine (NLM), National Center for Biotechnology Information (NCBI), Bethesda, MD, 20894, USA.
University of Maryland at College Park, Department of Computer Science, College Park, MD, 20742, USA.
Commun Med (Lond). 2024 Sep 10;4(1):176. doi: 10.1038/s43856-024-00601-z.
BACKGROUND: Large language models like GPT-3.5-turbo and GPT-4 hold promise for healthcare professionals, but they may inadvertently inherit biases during their training, potentially affecting their utility in medical applications. Despite few attempts in the past, the precise impact and extent of these biases remain uncertain. METHODS: We use LLMs to generate responses that predict hospitalization, cost and mortality based on real patient cases. We manually examine the generated responses to identify biases. RESULTS: We find that these models tend to project higher costs and longer hospitalizations for white populations and exhibit optimistic views in challenging medical scenarios with much higher survival rates. These biases, which mirror real-world healthcare disparities, are evident in the generation of patient backgrounds, the association of specific diseases with certain racial and ethnic groups, and disparities in treatment recommendations, etc. CONCLUSIONS: Our findings underscore the critical need for future research to address and mitigate biases in language models, especially in critical healthcare applications, to ensure fair and accurate outcomes for all patients.
背景:像GPT-3.5-turbo和GPT-4这样的大语言模型对医疗保健专业人员具有重要意义,但它们在训练过程中可能会无意中继承偏差,这可能会影响它们在医疗应用中的效用。尽管过去有过一些尝试,但这些偏差的确切影响和程度仍不确定。 方法:我们使用大语言模型根据真实患者病例生成预测住院、费用和死亡率的回复。我们人工检查生成的回复以识别偏差。 结果:我们发现,这些模型往往预测白人的费用更高、住院时间更长,并且在生存率高得多的具有挑战性的医疗场景中表现出乐观的看法。这些反映现实世界医疗保健差异的偏差在患者背景的生成、特定疾病与某些种族和族裔群体的关联以及治疗建议的差异等方面很明显。结论:我们的研究结果强调了未来研究的迫切需求,即解决和减轻语言模型中的偏差,特别是在关键的医疗保健应用中,以确保所有患者都能获得公平和准确的结果。
Commun Med (Lond). 2024-9-10
2025-1
BMC Health Serv Res. 2025-7-2
J Med Internet Res. 2025-6-9
NPJ Digit Med. 2025-3-7
Int J Equity Health. 2025-2-26
Brief Bioinform. 2023-11-22
NPJ Digit Med. 2023-10-20
Radiology. 2023-6
JAMA Netw Open. 2022-6-1
JAMA. 2021-8-17
Heart Views. 2017
Med Care Res Rev. 2012-12-4