Dennstädt Fabio, Hastings Janna, Putora Paul Martin, Schmerder Max, Cihoric Nikola
Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.
School of Medicine, University of St. Gallen, St. Gallen, Switzerland.
NPJ Digit Med. 2025 Mar 6;8(1):143. doi: 10.1038/s41746-025-01476-7.
Integrating Large Language Models (LLMs) into healthcare promises substantial advancements but requires careful consideration of technical, ethical, and regulatory challenges. Closed LLMs of private companies offer ease of deployment but pose risks related to data privacy and vendor dependence. Open LLMs deployed on local hardware enable greater model customization but demand resources and technical expertise. Balancing these approaches, with collaboration among clinicians, researchers, and companies is crucial to ensure effective, secure, and ethical implementation.
将大语言模型(LLMs)整合到医疗保健领域有望带来重大进展,但需要仔细考虑技术、伦理和监管方面的挑战。私营公司的封闭大语言模型易于部署,但存在数据隐私和对供应商依赖的风险。在本地硬件上部署的开放大语言模型能够实现更大程度的模型定制,但需要资源和技术专长。在临床医生、研究人员和公司之间进行协作,平衡这些方法,对于确保有效、安全和符合伦理的实施至关重要。
J Healthc Manag. 2018
Health Estate. 2011-11
Food Nutr Bull. 2023-12
Adv Radiat Oncol. 2025-7-10
NPJ Digit Med. 2025-7-10
BMC Med Inform Decis Mak. 2025-7-1
Commun Med (Lond). 2024-9-10
NPJ Digit Med. 2024-5-1
Lancet Digit Health. 2024-1
JAMA Netw Open. 2023-11-1
Commun Med (Lond). 2023-10-10
JMIR Med Educ. 2023-8-14
Lancet Digit Health. 2023-4