Suppr超能文献

在医疗保健领域应用大语言模型的同时,平衡控制、协作、成本和安全性。

Implementing large language models in healthcare while balancing control, collaboration, costs and security.

作者信息

Dennstädt Fabio, Hastings Janna, Putora Paul Martin, Schmerder Max, Cihoric Nikola

机构信息

Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.

School of Medicine, University of St. Gallen, St. Gallen, Switzerland.

出版信息

NPJ Digit Med. 2025 Mar 6;8(1):143. doi: 10.1038/s41746-025-01476-7.

Abstract

Integrating Large Language Models (LLMs) into healthcare promises substantial advancements but requires careful consideration of technical, ethical, and regulatory challenges. Closed LLMs of private companies offer ease of deployment but pose risks related to data privacy and vendor dependence. Open LLMs deployed on local hardware enable greater model customization but demand resources and technical expertise. Balancing these approaches, with collaboration among clinicians, researchers, and companies is crucial to ensure effective, secure, and ethical implementation.

摘要

将大语言模型(LLMs)整合到医疗保健领域有望带来重大进展,但需要仔细考虑技术、伦理和监管方面的挑战。私营公司的封闭大语言模型易于部署,但存在数据隐私和对供应商依赖的风险。在本地硬件上部署的开放大语言模型能够实现更大程度的模型定制,但需要资源和技术专长。在临床医生、研究人员和公司之间进行协作,平衡这些方法,对于确保有效、安全和符合伦理的实施至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1147/11885444/f05e04debd39/41746_2025_1476_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验