Department of Electronics and Communication Engineering, Global academy of Technology, Bengaluru, Karnataka, India.
Department of Electronics and Communication Engineering, JSS Academy of Technical Education, Bengaluru, Karnataka, India.
Ultrason Imaging. 2024 Nov;46(6):342-356. doi: 10.1177/01617346241271240. Epub 2024 Sep 10.
In this research work, Semantic-Preserved Generative Adversarial Network optimized by Piranha Foraging Optimization for Thyroid Nodule Classification in Ultrasound Images (SPGAN-PFO-TNC-UI) is proposed. Initially, ultrasound images are gathered from the DDTI dataset. Then the input image is sent to the pre-processing step. During pre-processing stage, the Multi-Window Savitzky-Golay Filter (MWSGF) is employed to reduce the noise and improve the quality of the ultrasound (US) images. The pre-processed output is supplied to the Generalized Intuitionistic Fuzzy C-Means Clustering (GIFCMC). Here, the ultrasound image's Region of Interest (ROI) is segmented. The segmentation output is supplied to the Fully Numerical Laplace Transform (FNLT) to extract the features, such as geometric features like solidity, orientation, roundness, main axis length, minor axis length, bounding box, convex area, and morphological features, like area, perimeter, aspect ratio, and AP ratio. The Semantic-Preserved Generative Adversarial Network (SPGAN) separates the image as benign or malignant nodules. Generally, SPGAN does not express any optimization adaptation methodologies for determining the best parameters to ensure the accurate classification of thyroid nodules. Therefore, the Piranha Foraging Optimization (PFO) algorithm is proposed to improve the SPGAN classifier and accurately identify the thyroid nodules. The metrics, like F-score, accuracy, error rate, precision, sensitivity, specificity, ROC, computing time is examined. The proposed SPGAN-PFO-TNC-UI method attains 30.54%, 21.30%, 27.40%, and 18.92% higher precision and 26.97%, 20.41%, 15.09%, and 18.27% lower error rate compared with existing techniques, like Thyroid detection and classification using DNN with Hybrid Meta-Heuristic and LSTM (TD-DL-HMH-LSTM), Quantum-Inspired convolutional neural networks for optimized thyroid nodule categorization (QCNN-OTNC), Thyroid nodules classification under Follow the Regularized Leader Optimization based Deep Neural Networks (CTN-FRL-DNN), Automatic classification of ultrasound thyroids images using vision transformers and generative adversarial networks (ACUTI-VT-GAN) respectively.
在这项研究工作中,提出了一种基于食人鱼觅食优化算法优化的语义保留生成对抗网络,用于甲状腺结节超声图像分类(SPGAN-PFO-TNC-UI)。首先,从 DDTI 数据集收集超声图像。然后将输入图像发送到预处理步骤。在预处理阶段,使用多窗口 Savitzky-Golay 滤波器(MWSGF)来减少噪声并提高超声(US)图像的质量。预处理后的输出提供给广义直觉模糊 C 均值聚类(GIFCMC)。在这里,分割超声图像的感兴趣区域(ROI)。分割输出提供给全数值拉普拉斯变换(FNLT)以提取特征,例如实心度、方向、圆形度、主轴长度、次轴长度、边界框、凸面积和形态特征,如面积、周长、纵横比和 AP 比。语义保留生成对抗网络(SPGAN)将图像分为良性或恶性结节。一般来说,SPGAN 没有表达任何优化自适应方法来确定最佳参数,以确保甲状腺结节的准确分类。因此,提出了食人鱼觅食优化(PFO)算法来改进 SPGAN 分类器并准确识别甲状腺结节。检查了度量标准,如 F 分数、准确性、错误率、精度、敏感性、特异性、ROC、计算时间。与现有技术(如基于 DNN 的混合启发式和 LSTM 的甲状腺检测和分类(TD-DL-HMH-LSTM)、用于优化甲状腺结节分类的量子启发卷积神经网络(QCNN-OTNC)、基于正则化领导者优化的深度神经网络下的甲状腺结节分类(CTN-FRL-DNN)、使用视觉转换器和生成对抗网络的超声甲状腺图像自动分类(ACUTI-VT-GAN)相比,所提出的 SPGAN-PFO-TNC-UI 方法分别提高了 30.54%、21.30%、27.40%和 18.92%的精度,降低了 26.97%、20.41%、15.09%和 18.27%的错误率。