Ejiyi Chukwuebuka Joseph, Qin Zhen, Ukwuoma Chiagoziem Chima, Nneji Grace Ugochi, Monday Happy Nkanta, Ejiyi Makuachukwu Bennedith, Chikwendu Ijeoma Amuche, Oluwasanmi Ariyo
College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, Sichuan, China.
School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, China.
Network. 2024 Sep 11:1-28. doi: 10.1080/0954898X.2024.2398531.
Public safety is a critical concern, typically addressed through security checks at entrances of public places, involving trained officers or X-ray scanning machines to detect prohibited items. However, many places like hospitals, schools, and event centres lack such resources, risking security breaches. Even with X-ray scanners or manual checks, gaps can be exploited by individuals with malicious intent, posing significant security risks. Additionally, traditional methods, relying on manual inspections and conventional image processing techniques, are often inefficient and prone to high error rates. To mitigate these risks, we propose a real-time detection model - EnhanceNet using a customized Scale-Enhanced Pooling Network (SEP-Net) integrated into the YOLOv4. The innovative SEP-Net enhances feature representation and localization accuracy, significantly contributing to the model's efficacy in detecting prohibited items. We annotated a custom dataset of nine classes and evaluated our models using different input sizes (608 and 416). The 608 input size achieved a mean Average Precision (mAP) of 74.10% with a detection speed of 22.3 Frames per Second (FPS). The 416 input size showed superior performance, achieving a mAP of 76.75% and a detection speed of 27.1 FPS. These demonstrate that our models are accurate and efficient, making them suitable for real-time applications.
公共安全是一个至关重要的问题,通常通过在公共场所入口处进行安全检查来解决,这涉及训练有素的工作人员或X光扫描机以检测违禁物品。然而,许多场所,如医院、学校和活动中心,缺乏此类资源,存在安全漏洞风险。即使有X光扫描仪或人工检查,恶意人员仍可能利用其中的漏洞,带来重大安全风险。此外,依靠人工检查和传统图像处理技术的传统方法往往效率低下且错误率高。为了降低这些风险,我们提出了一种实时检测模型——EnhanceNet,它使用了集成到YOLOv4中的定制化尺度增强池化网络(SEP-Net)。创新的SEP-Net增强了特征表示和定位精度,对模型检测违禁物品的效能有显著贡献。我们标注了一个包含九个类别的自定义数据集,并使用不同的输入大小(608和416)对我们的模型进行评估。输入大小为608时,平均精度均值(mAP)达到74.10%,检测速度为每秒22.3帧(FPS)。输入大小为416时表现更优,mAP达到76.75%,检测速度为27.1 FPS。这些结果表明我们的模型准确且高效,适用于实时应用。