文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

DeepSperm:一种在密集精子群体中实时检测牛精子细胞的稳健方法。

DeepSperm: A robust and real-time bull sperm-cell detection in densely populated semen videos.

机构信息

School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, 40132, Indonesia; Computer Engineering and Informatics Department, Politeknik Negeri Bandung, Kabupaten Bandung Barat, 40559, Indonesia.

Department of Information and Communication Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.

出版信息

Comput Methods Programs Biomed. 2021 Sep;209:106302. doi: 10.1016/j.cmpb.2021.106302. Epub 2021 Jul 27.


DOI:10.1016/j.cmpb.2021.106302
PMID:34390937
Abstract

BACKGROUND AND OBJECTIVE: Object detection is a primary research interest in computer vision. Sperm-cell detection in a densely populated bull semen microscopic observation video presents challenges that are more difficult than those presented by other general object-detection cases. These challenges include partial occlusion, vast number of objects in a single video frame, tiny size of the object, artifacts, low contrast, low video resolution, and blurry objects because of the rapid movement of the sperm cells. This study proposes a deep neural network architecture, called DeepSperm, that solves the aforementioned problems and is more accurate and faster than state-of-the-art architectures. METHODS: In the proposed architecture, we use only one detection layer, which is specific for small object detection. For handling overfitting and increasing accuracy, we set a higher input network resolution, use a dropout layer, and perform data augmentation on saturation and exposure. Several hyper-parameters are tuned to achieve better performance. Mean average precision (mAP), confusion matrix, precision, recall, and F1-score are used to measure accuracy. Frame per second (fps) is used to measure speed. We compare our proposed method with you only look once (YOLO) v3 and YOLOv4. RESULTS: In our experiment, we achieve 94.11 mAP on the test dataset, F1-score of 0.93, and a processing speed of 51.9 fps. In comparison with YOLOv4, our proposed method is 2.18 x faster on testing, and 2.9 x faster on training with a small dataset, while achieving comparative detection accuracy. The weights file size was also reduced significantly, with one-twentieth that of YOLOv4. Moreover, it requires a 1.07 x less graphical processing unit (GPU) memory than YOLOv4. CONCLUSIONS: This study proposes DeepSperm, which is a simple, effective, and efficient deep neural network architecture with its hyper-parameters and configuration to detect bull sperm cells robustly in real time. In our experiments, we surpass the state-of-the-art in terms of accuracy, speed, and resource needs.

摘要

背景与目的:目标检测是计算机视觉的主要研究兴趣之一。在密集的公牛精液显微镜观察视频中检测精子细胞比其他一般目标检测情况更具挑战性。这些挑战包括部分遮挡、单个视频帧中对象数量众多、对象尺寸微小、伪影、对比度低、视频分辨率低以及由于精子细胞快速运动导致的对象模糊。本研究提出了一种名为 DeepSperm 的深度神经网络架构,该架构解决了上述问题,并且比最先进的架构更准确和快速。

方法:在提出的架构中,我们仅使用一个特定于小目标检测的检测层。为了处理过拟合并提高准确性,我们设置了更高的输入网络分辨率,使用了 dropout 层,并对饱和度和曝光度进行了数据增强。调整了几个超参数以获得更好的性能。平均精度均值(mAP)、混淆矩阵、精度、召回率和 F1 分数用于衡量准确性。帧率(fps)用于衡量速度。我们将我们提出的方法与只看一次(YOLO)v3 和 YOLOv4 进行了比较。

结果:在我们的实验中,我们在测试数据集上达到了 94.11 的 mAP、0.93 的 F1 分数和 51.9 fps 的处理速度。与 YOLOv4 相比,我们提出的方法在测试时快 2.18 倍,在训练小数据集时快 2.9 倍,同时实现了相当的检测精度。权重文件大小也显著减小,仅为 YOLOv4 的二十分之一。此外,它需要比 YOLOv4 少 1.07 倍的图形处理单元(GPU)内存。

结论:本研究提出了 DeepSperm,这是一种简单、有效和高效的深度神经网络架构,具有其超参数和配置,可以实时稳健地检测公牛精子细胞。在我们的实验中,我们在准确性、速度和资源需求方面超越了最先进的技术。

相似文献

[1]
DeepSperm: A robust and real-time bull sperm-cell detection in densely populated semen videos.

Comput Methods Programs Biomed. 2021-9

[2]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[3]
Comparative analysis of computer vision algorithms for the real-time detection of digital dermatitis in dairy cows.

Prev Vet Med. 2024-8

[4]
TOD-CNN: An effective convolutional neural network for tiny object detection in sperm videos.

Comput Biol Med. 2022-7

[5]
A novel algorithm for small object detection based on YOLOv4.

PeerJ Comput Sci. 2023-3-22

[6]
Real-Time Small Drones Detection Based on Pruned YOLOv4.

Sensors (Basel). 2021-5-12

[7]
GCS-YOLOV4-Tiny: A lightweight group convolution network for multi-stage fruit detection.

Math Biosci Eng. 2023-1

[8]
Study on Sperm-Cell Detection Using YOLOv5 Architecture with Labaled Dataset.

Genes (Basel). 2023-2-9

[9]
Auditory Speech Based Alerting System for Detecting Dummy Number Plate via Video Processing Data sets.

Comput Intell Neurosci. 2022

[10]
Design of a Scalable and Fast YOLO for Edge-Computing Devices.

Sensors (Basel). 2020-11-27

引用本文的文献

[1]
Advances in cell-based biosensors: Transforming food flavor evaluation with novel approaches.

Food Chem X. 2025-3-1

[2]
Artificial intelligence interpretation of touch print smear cytology of testicular specimen from patients with azoospermia.

J Assist Reprod Genet. 2024-11

[3]
Deep Learning-Based Precision Analysis for Acrosome Reaction by Modification of Plasma Membrane in Boar Sperm.

Animals (Basel). 2023-8-14

[4]
Study on Sperm-Cell Detection Using YOLOv5 Architecture with Labaled Dataset.

Genes (Basel). 2023-2-9

[5]
GAN-based semi-automated augmentation online tool for agricultural pest detection: A case study on whiteflies.

Front Plant Sci. 2022-9-16

[6]
A deep learning model (FociRad) for automated detection of γ-H2AX foci and radiation dose estimation.

Sci Rep. 2022-4-1

[7]
A Deep Learning-Based Quantitative Structure-Activity Relationship System Construct Prediction Model of Agonist and Antagonist with High Performance.

Int J Mol Sci. 2022-2-15

[8]
Deep Learning Based Evaluation of Spermatozoid Motility for Artificial Insemination.

Sensors (Basel). 2020-12-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索