Rodríguez-Ramos R, Espinosa-Almeyda Y, Guinovart-Sanjuán D, Camacho-Montes H, Rodríguez-Bermúdez P, Brito-Santana H, Otero J A, Sabina F J
Facultad de Matemática y Computación, Universidad de La Habana, San Lázaro y L, Vedado, La Habana 10400, Cuba.
PPG-MCCT, Universidade Federal Fluminense, Av. dos Trabalhadores 420, Vila Sta. Cecília, Volta Redonda, Rio de Janeiro 27255-125, Brasil.
Interface Focus. 2024 Jun 7;14(3):20230064. doi: 10.1098/rsfs.2023.0064. eCollection 2024 Jun.
The asymptotic homogenization method is applied to characterize the effective behaviour of periodic multi-laminated micropolar elastic heterogeneous composites under perfect contact conditions. The local problem formulations and the analytical expressions for the effective stiffness and torque coefficients are derived for the centrosymmetric case. One of the main findings in this work is the analysis of the rotations effect of the layers' constitutive properties on the mechanical response of bi-laminated composites. The effects of microstructure and interfacial interactions on the composite's mechanical behaviour are captured through the independent effective moduli. Comparisons with the classical elastic case show the approach validation. Some numerical examples are shown. Furthermore, considering the micropolar media's prevalence in bio-inspired systems, the model's applicability is evaluated for reconstructing bone fractures using multi-laminated biocomposites. An important finding in this bio-inspired simulation is related to the analysis of a periodic bi-laminated micropolar composite whose isotropic constituents are a bioceramic material and a compact bone. This artificial bio-inspired material should integrate with host tissue to support cell growth and be stable and compatible. These characteristics are crucial in the enhancement of the fractured bone.
渐近均匀化方法用于表征在完美接触条件下周期性多层层状微极弹性非均质复合材料的有效行为。针对中心对称情况,推导了局部问题的公式以及有效刚度和扭矩系数的解析表达式。这项工作的主要发现之一是分析层的本构特性的旋转对双层层状复合材料力学响应的影响。通过独立的有效模量来捕捉微观结构和界面相互作用对复合材料力学行为的影响。与经典弹性情况的比较验证了该方法。给出了一些数值示例。此外,考虑到微极介质在生物启发系统中的普遍性,评估了该模型在使用多层层状生物复合材料重建骨折方面的适用性。在这种生物启发模拟中的一个重要发现与对周期性双层层状微极复合材料的分析有关,其各向同性成分是一种生物陶瓷材料和致密骨。这种人工生物启发材料应与宿主组织整合以支持细胞生长,并且要稳定且兼容。这些特性对于增强骨折骨至关重要。