Suppr超能文献

利用球体芯片灌注系统研究间质液流动和缺氧界面对癌症转录组的影响。

Investigating the impact of the interstitial fluid flow and hypoxia interface on cancer transcriptomes using a spheroid-on-chip perfusion system.

机构信息

Centre for Biomedicine, HYMS, University of Hull, Hull, UK.

Translational Radiobiology, Division of Cancer Sciences, University of Manchester, Manchester, UK.

出版信息

Lab Chip. 2024 Sep 24;24(19):4609-4622. doi: 10.1039/d4lc00512k.

Abstract

Solid tumours are complex and heterogeneous systems, which exist in a dynamic biophysical microenvironment. Conventional cancer research methods have long relied on two-dimensional (2D) static cultures which neglect the dynamic, three-dimensional (3D) nature of the biophysical tumour microenvironment (TME), especially the role and impact of interstitial fluid flow (IFF). To address this, we undertook a transcriptome-wide analysis of the impact of IFF-like perfusion flow using a spheroid-on-chip microfluidic platform, which allows 3D cancer spheroids to be integrated into extracellular matrices (ECM)-like hydrogels and exposed to continuous perfusion, to mimic IFF in the TME. Importantly, we have performed these studies both in experimental (normoxia) and pathophysiological (hypoxia) oxygen conditions. Our data indicated that gene expression was altered by flow when compared to static conditions, and for the first time showed that these gene expression patterns differed in different oxygen tensions, reflecting a differential role of spheroid perfusion in IFF-like flow in tumour-relevant hypoxic conditions in the biophysical TME. We were also able to identify factors primarily linked with IFF-like conditions which are linked with prognostic value in cancer patients and therefore could correspond to a potential novel biomarker of IFF in cancer. This study therefore highlights the need to consider relevant oxygen conditions when studying the impact of flow in cancer biology, as well as demonstrating the potential of microfluidic models of flow to identify IFF-relevant tumour biomarkers.

摘要

实体瘤是复杂且异质的系统,存在于动态的生物物理微环境中。传统的癌症研究方法长期依赖于二维(2D)静态培养,忽略了生物物理肿瘤微环境(TME)的动态三维(3D)性质,特别是间质液流动(IFF)的作用和影响。为了解决这个问题,我们使用球体芯片微流控平台对 IFF 样灌注流动的影响进行了全转录组分析,该平台允许将 3D 癌症球体整合到细胞外基质(ECM)样水凝胶中,并暴露于连续灌注中,以模拟 TME 中的 IFF。重要的是,我们在实验(常氧)和病理生理(缺氧)氧条件下进行了这些研究。与静态条件相比,我们的数据表明,流动会改变基因表达,并且首次表明,这些基因表达模式在不同的氧张力下有所不同,反映了球体灌注在生物物理 TME 中与肿瘤相关缺氧条件下 IFF 样流动中的差异作用。我们还能够确定与 IFF 样条件主要相关的因素,这些因素与癌症患者的预后价值相关,因此可能对应于癌症中 IFF 的潜在新型生物标志物。因此,这项研究强调了在研究癌症生物学中流动的影响时需要考虑相关的氧气条件,同时也证明了微流控流动模型在识别 IFF 相关肿瘤生物标志物方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f87b/11388701/054afc0e34ca/d4lc00512k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验