Thenappan Dhivya P, Pandey Rakesh, Hada Alkesh, Jaiswal Dinesh Kumar, Chinnusamy Viswanathan, Bhattacharya Ramcharan, Annapurna Kannepalli
Systems Plant Physiology, Texas A&M AgriLife Research and Extension Center, Uvalde, TX, 78801, USA.
Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
Rice (N Y). 2024 Sep 11;17(1):60. doi: 10.1186/s12284-024-00732-w.
This study demonstrated the plant growth-promoting capabilities of native actinobacterial strains obtained from different regions of the rice plant, including the rhizosphere (FT1, FTSA2, FB2, and FH7) and endosphere (EB6). We delved into the molecular mechanisms underlying the beneficial effects of these plant-microbe interactions by conducting a transcriptional analysis of a select group of key genes involved in phytohormone pathways. Through in vitro screening for various plant growth-promoting (PGP) traits, all tested isolates exhibited positive traits for indole-3-acetic acid synthesis and siderophore production, with FT1 being the sole producer of hydrogen cyanide (HCN). All isolates were identified as members of the Streptomyces genus through 16S rRNA amplification. In pot culture experiments, rice seeds inoculated with strains FB2 and FTSA2 exhibited significant increases in shoot dry mass by 7% and 34%, respectively, and total biomass by 8% and 30%, respectively. All strains led to increased leaf nitrogen levels, with FTSA2 demonstrating the highest increase (4.3%). On the contrary, strains FB2 and FT1 increased root length, root weight ratio, root volume, and root surface area, leading to higher root nitrogen content. All isolates, except for FB2, enhanced total chlorophyll and carotenoid levels. Additionally, qRT-PCR analysis supported these findings, revealing differential gene expression in auxin (OsAUX1, OsIAA1, OsYUCCA1, OsYUCCA3), gibberellin (OsGID1, OsGA20ox-1), and cytokinin (OsIPT3, OsIPT5) pathways in response to specific actinobacterial treatments. These actinobacterial strains, which enhance both aboveground and belowground crop characteristics, warrant further evaluation in field trials, either as individual strains or in consortia. This could lead to the development of commercial bioinoculants for use in integrated nutrient management practices.
本研究展示了从水稻植株不同部位获得的本地放线菌菌株促进植物生长的能力,这些部位包括根际(FT1、FTSA2、FB2和FH7)和内生菌(EB6)。我们通过对一组参与植物激素途径的关键基因进行转录分析,深入探究了这些植物 - 微生物相互作用产生有益影响的分子机制。通过体外筛选各种促进植物生长(PGP)特性,所有测试分离株均表现出吲哚 - 3 - 乙酸合成和铁载体产生的积极特性,其中FT1是唯一产生氰化氢(HCN)的菌株。通过16S rRNA扩增,所有分离株均被鉴定为链霉菌属成员。在盆栽试验中,接种菌株FB2和FTSA2的水稻种子地上部干重分别显著增加了7%和34%,总生物量分别增加了8%和30%。所有菌株均导致叶片氮含量增加,其中FTSA2增加幅度最大(4.3%)。相反,菌株FB2和FT1增加了根长、根重比、根体积和根表面积,从而导致根氮含量更高。除FB2外,所有分离株均提高了总叶绿素和类胡萝卜素水平。此外,qRT - PCR分析支持了这些发现,揭示了生长素(OsAUX1、OsIAA1、OsYUCCA1、OsYUCCA3)、赤霉素(OsGID1、OsGA20ox - 1)和细胞分裂素(OsIPT3、OsIPT5)途径中因特定放线菌处理而产生的差异基因表达。这些能增强地上和地下作物特性的放线菌菌株,无论是作为单一菌株还是组合,都值得在田间试验中进一步评估。这可能会促成用于综合养分管理实践的商业生物接种剂的开发。