Suppr超能文献

通常从扩散张量纤维束成像得出的定量指标与纤维束长度共同变化:一种特征描述及调整方法。

Quantitative metrics commonly derived from diffusion tractography covary with streamline length: a characterization and method of adjustment.

作者信息

Carson Richard G, Leemans Alexander

机构信息

Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Dublin, Ireland.

Image Sciences Institute, University Medical Center Utrecht, Utrecht, 85500, The Netherlands.

出版信息

Brain Struct Funct. 2024 Dec;229(9):2431-2444. doi: 10.1007/s00429-024-02854-9. Epub 2024 Sep 11.

Abstract

Tractography algorithms are used extensively to delineate white matter structures, by operating on the voxel-wise information generated through the application of diffusion tensor imaging (DTI) or other models to diffusion weighted (DW) magnetic resonance imaging (MRI) data. Through statistical modelling, we demonstrate that these methods commonly yield substantial and systematic associations between streamline length and several tractography derived quantitative metrics, such as fractional anisotropy (FA). These associations may be described as piecewise linear. For streamlines shorter than an inflection point (determined for a group of tracts delineated for each individual brain), estimates of FA exhibit a positive linear relation with streamline length. For streamlines longer than the point of inflection, the association is weaker, with the slope of the relationship between streamline length and FA differing only marginally from zero. As the association is most pronounced for a range of streamline lengths encountered typically in DW imaging of the human brain (less than ~ 100 mm), our results suggest that some quantitative metrics derived from diffusion tractography have the potential to mislead, if variations in streamline length are not considered. A method is described, whereby an Akaike information weighted average of linear, Blackman and piecewise linear model predictions, may be used to compensate effectively for the association of FA (and other quantitative metrics) with streamline length, across the entire range of streamline lengths present in each specimen.

摘要

纤维束成像算法通过对扩散张量成像(DTI)或其他模型应用于扩散加权(DW)磁共振成像(MRI)数据所生成的体素级信息进行操作,被广泛用于描绘白质结构。通过统计建模,我们证明这些方法通常会在流线长度与几种纤维束成像衍生的定量指标(如分数各向异性(FA))之间产生显著且系统的关联。这些关联可被描述为分段线性。对于短于拐点(为每个个体大脑描绘的一组纤维束所确定)的流线,FA估计值与流线长度呈现正线性关系。对于长于拐点的流线,这种关联较弱,流线长度与FA之间关系的斜率仅略不同于零。由于这种关联在人脑DW成像中通常遇到的一系列流线长度范围内(小于约100毫米)最为明显,我们的结果表明,如果不考虑流线长度的变化,一些从扩散纤维束成像得出的定量指标可能会产生误导。本文描述了一种方法,通过该方法,线性、布莱克曼和分段线性模型预测的赤池信息加权平均值可用于有效补偿每个样本中存在的整个流线长度范围内FA(以及其他定量指标)与流线长度的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f24a/11611944/a2e7f2e8e35e/429_2024_2854_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验