Suppr超能文献

基于含木质素纤维素纤维的 MXene 薄膜电极具有高机械强度、分级离子通道和高赝电容活性。

MXene film electrodes with high mechanical strength, graded ion channels and high pseudocapacitive activity enabled by lignin-containing cellulose fibers.

机构信息

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.

出版信息

Int J Biol Macromol. 2024 Nov;279(Pt 4):135476. doi: 10.1016/j.ijbiomac.2024.135476. Epub 2024 Sep 10.

Abstract

Cellulose nanofiber (CNF) has been widely used in MXene film electrodes to improve its mechanical properties and rate capability for supercapacitors. However, all the above enhancements are obtained with inevitably sacrificing the capacitance, because of the non-electrochemically-active characteristic of CNF. Herein, to address this issue, lignin-containing cellulose fibers (LCNF) is innovatively used to substitute CNF. Specifically, LCNF play a role as a bridge to significantly reinforce mechanical strength of LCNF/MXene film electrode (LM) by binding the adjacent MXene nanosheets, reaching a tensile strength of 34.2 MPa. Lignin in LCNF contributes to pseudocapacitance through the reversible conversion of its quinone/hydro-quinone (Q/QH), thus yielding an excellent capacitance of 364.4 F g at 1 A g. Meanwhile, LCNF has different diameters in which microfibers form a loose structure for LM, nanofibers enlarge d-spacing between adjacent MXene nanosheets, and fibers self-crosslinking creates abundant pores, thus constructing graded channels to achieve an outstanding rate capability of 87 % at 15 A g. The fabricated supercapacitor demonstrates a large energy density of 1.8 Wh g at 71.3 W g. This work provides a promising approach to decouple the trade-off between electrochemical performance and mechanical properties of MXene film electrodes caused by using CNF, thus obtaining high-performance supercapacitors.

摘要

纤维素纳米纤维 (CNF) 已广泛用于 MXene 薄膜电极中,以提高其机械性能和超级电容器的倍率性能。然而,由于 CNF 具有非电化学活性的特点,所有上述增强都是以牺牲电容为代价获得的。在此,为了解决这个问题,创新性地使用含木质素的纤维素纤维 (LCNF) 替代 CNF。具体来说,LCNF 作为桥梁,通过结合相邻的 MXene 纳米片,显著增强了 LCNF/MXene 薄膜电极 (LM) 的机械强度,达到了 34.2 MPa 的拉伸强度。LCNF 中的木质素通过其醌/氢醌 (Q/QH) 的可逆转化贡献赝电容,从而在 1 A g 时表现出优异的电容 364.4 F g。同时,LCNF 的直径不同,其中微纤维形成 LM 的疏松结构,纳米纤维增大相邻 MXene 纳米片之间的 d 间距,纤维自交联形成丰富的孔,从而构建分级通道,在 15 A g 时实现出色的倍率性能 87%。所制备的超级电容器在 71.3 W g 时具有 1.8 Wh g 的大能量密度。这项工作提供了一种有前途的方法,可以解耦由于使用 CNF 而导致的 MXene 薄膜电极的电化学性能和机械性能之间的权衡,从而获得高性能超级电容器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验