Suppr超能文献

微生物燃料电池辅助堆肥显示出更强的固定磷能力:强调细菌结构和功能酶。

Microbial fuel cell-assisted composting shows stronger capacity to immobilize phosphorus: Emphasized on bacterial structures and functional enzymes.

机构信息

State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

出版信息

Bioresour Technol. 2024 Dec;413:131456. doi: 10.1016/j.biortech.2024.131456. Epub 2024 Sep 12.

Abstract

Limited scientific evidence exists on phosphorus immobilization under autogenetic electrochemical reactions in composting systems. This study exploited a composting procedure using microbial fuel cell (MFC) to ascertain phosphorus redistribution during composting process. Compared to the control without MFC equipment, MFC-assisted treatment yielded a 13 % decrease in phosphorus availability due to the transformation of exchangeable fraction (Ex-P) to aluminum-bound (Al-P) and calcium-bound (Ca-P) fractions. During the composting process, organic humification primarily controlled phosphorus redistribution and immobilization. Biotic factors, including bacterial communities (i.e., Firmicutes, Proteobacteria, Bacteroidota, and Gemmatimonadota) and functional enzymes (i.e., acid phosphatase, alkaline phosphatase, phytase, and C-P lyase), significantly influenced phosphorus availability in the composting systems. Temperature-dependent composting phases restricted microbial actions on phosphorus transformation. These findings highlight the mechanisms underlying phosphorus transformation in composting systems, and provide valuable insights for advancing composting technology and protecting agricultural ecosystems.

摘要

在堆肥系统中的自生性电化学反应下磷固定化的科学证据有限。本研究利用微生物燃料电池(MFC)进行堆肥程序,以确定堆肥过程中磷的再分配。与没有 MFC 设备的对照相比,由于可交换部分(Ex-P)转化为铝结合(Al-P)和钙结合(Ca-P)部分,MFC 辅助处理使磷的有效性降低了 13%。在堆肥过程中,有机腐殖质主要控制磷的再分配和固定化。生物因素,包括细菌群落(即厚壁菌门、变形菌门、拟杆菌门和芽单胞菌门)和功能酶(即酸性磷酸酶、碱性磷酸酶、植酸酶和 C-P 裂合酶),对堆肥系统中磷的有效性有显著影响。温度依赖型堆肥阶段限制了微生物对磷转化的作用。这些发现强调了堆肥系统中磷转化的机制,并为推进堆肥技术和保护农业生态系统提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验