Suppr超能文献

[多重疾病作为临床急诊和急性医学中住院患者入院的预测因素:单中心聚类分析]

[Multimorbidity as a predictor for inpatient admission in clinical emergency and acute medicine : Single-center cluster analysis].

作者信息

Grüneberg E, Fliedner R, Beißbarth T, von Arnim C A F, Blaschke S

机构信息

Zentrale Notaufnahme, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland.

Klinik für Geriatrie, Universitätsmedizin Göttingen, Göttingen, Deutschland.

出版信息

Med Klin Intensivmed Notfmed. 2025 Jun;120(5):419-425. doi: 10.1007/s00063-024-01180-6. Epub 2024 Sep 11.

Abstract

BACKGROUND

Parallel to demographic trends, an increase of multimorbid patients in emergency and acute medicine is prominent. To define easily applicable criteria for the necessity of inpatient admission, a hierarchical cluster analysis was performed.

METHODS

In a retrospective, single-center study data of n = 35,249 emergency cases (01/2016-05/2018) were statistically analyzed. Multimorbidity (MM) was defined by at least five ICD-10-GM diagnoses resulting from treatment. A hierarchical cluster analysis was performed for those diagnoses initially summarized into 112 diagnosis subclusters to determine specific clusters of in- and outpatient cases.

RESULTS

Hospital admission was determined in 81.2% of all ED patients (n = 28,633); 54.7% of inpatients (n = 15,652) and 0.97% of outpatient cases (n = 64) met the criteria for multimorbidity and the age difference between them was highly significant (68.7/60.8 years; p < 0.001). Using a hierarchical cluster analysis, 13 clusters with different diagnoses were identified for inpatient multimorbid patients (MP) and 7 clusters with primarily hematological malignancies for outpatient MP. The length of stay in the ED of inpatient MP was more than twice as long (max. 8.3 h) as for outpatient MP (max. 3.2 h.).

CONCLUSIONS

The combination of diagnoses typical for MM were characterized as clusters in this study. In contrast to single or combined single diagnoses, the statistically determined characterization of clusters allows for a significantly more accurate prediction of ED patients' disposition as well as for economic process allocation.

摘要

背景

与人口趋势同步,急诊和急性医学中多重疾病患者的数量显著增加。为了确定易于应用的住院必要性标准,进行了分层聚类分析。

方法

在一项回顾性单中心研究中,对n = 35249例急诊病例(2016年1月至2018年5月)的数据进行了统计分析。多重疾病(MM)定义为治疗导致的至少五种ICD-10-GM诊断。对最初汇总为112个诊断子集群的诊断进行分层聚类分析,以确定住院和门诊病例的特定集群。

结果

所有急诊患者中有81.2%(n = 28633)被确定需要住院治疗;54.7%的住院患者(n = 15652)和0.97%的门诊患者(n = 64)符合多重疾病标准,且他们之间的年龄差异非常显著(68.7/60.8岁;p < 0.001)。通过分层聚类分析,确定了13个不同诊断的住院多重疾病患者(MP)集群和7个主要为血液系统恶性肿瘤的门诊MP集群。住院MP在急诊室的停留时间是门诊MP的两倍多(最长8.3小时)(最长3.2小时)。

结论

本研究中,MM典型诊断的组合被表征为集群。与单一或组合的单一诊断相比,通过统计确定的集群表征能够更准确地预测急诊患者的处置情况以及进行经济流程分配。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验