Suppr超能文献

在 Medicare 数据中测量虚弱程度:基于索赔的虚弱指数的开发和验证。

Measuring Frailty in Medicare Data: Development and Validation of a Claims-Based Frailty Index.

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.

Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.

出版信息

J Gerontol A Biol Sci Med Sci. 2018 Jun 14;73(7):980-987. doi: 10.1093/gerona/glx229.

Abstract

BACKGROUND

Frailty is a key determinant of health status and outcomes of health care interventions in older adults that is not readily measured in Medicare data. This study aimed to develop and validate a claims-based frailty index (CFI).

METHODS

We used data from Medicare Current Beneficiary Survey 2006 (development sample: n = 5,593) and 2011 (validation sample: n = 4,424). A CFI was developed using the 2006 claims data to approximate a survey-based frailty index (SFI) calculated from the 2006 survey data as a reference standard. We compared CFI to combined comorbidity index (CCI) in the ability to predict death, disability, recurrent falls, and health care utilization in 2007. As validation, we calculated a CFI using the 2011 claims data to predict these outcomes in 2012.

RESULTS

The CFI was correlated with SFI (correlation coefficient: 0.60). In the development sample, CFI was similar to CCI in predicting mortality (C statistic: 0.77 vs. 0.78), but better than CCI for disability, mobility impairment, and recurrent falls (C statistic: 0.62-0.66 vs. 0.56-0.60). Although both indices similarly explained the variation in hospital days, CFI outperformed CCI in explaining the variation in skilled nursing facility days. Adding CFI to age, sex, and CCI improved prediction. In the validation sample, CFI and CCI performed similarly for mortality (C statistic: 0.71 vs. 0.72). Other results were comparable to those from the development sample.

CONCLUSION

A novel frailty index can measure the risk for adverse health outcomes that is not otherwise quantified using demographic characteristics and traditional comorbidity measures in Medicare data.

摘要

背景

衰弱是影响老年人健康状况和医疗干预效果的关键因素,但在医疗保险数据中难以直接测量。本研究旨在开发和验证一种基于索赔的衰弱指数(CFI)。

方法

我们使用了医疗保险当前受益人调查 2006 年(开发样本:n=5593)和 2011 年(验证样本:n=4424)的数据。使用 2006 年的索赔数据开发了 CFI,以近似于使用 2006 年调查数据计算的基于调查的衰弱指数(SFI)作为参考标准。我们比较了 CFI 和综合合并症指数(CCI)在预测 2007 年死亡、残疾、反复跌倒和医疗保健利用方面的能力。作为验证,我们使用 2011 年的索赔数据计算了 CFI,以预测这些结果在 2012 年的情况。

结果

CFI 与 SFI 相关(相关系数:0.60)。在开发样本中,CFI 在预测死亡率方面与 CCI 相似(C 统计量:0.77 与 0.78),但在预测残疾、移动障碍和反复跌倒方面优于 CCI(C 统计量:0.62-0.66 与 0.56-0.60)。虽然这两个指数都能很好地解释住院天数的变化,但 CFI 在解释熟练护理设施天数的变化方面表现优于 CCI。将 CFI 与年龄、性别和 CCI 相结合可以提高预测能力。在验证样本中,CFI 和 CCI 在预测死亡率方面表现相似(C 统计量:0.71 与 0.72)。其他结果与开发样本的结果相当。

结论

一种新的衰弱指数可以衡量医疗保险数据中使用人口统计学特征和传统合并症测量方法无法量化的不良健康结果的风险。

相似文献

1
Measuring Frailty in Medicare Data: Development and Validation of a Claims-Based Frailty Index.
J Gerontol A Biol Sci Med Sci. 2018 Jun 14;73(7):980-987. doi: 10.1093/gerona/glx229.
4
Claims-Based Frailty Index and Its Relationship With Commonly Used Clinical Frailty Measures.
J Gerontol A Biol Sci Med Sci. 2024 Jul 1;79(7). doi: 10.1093/gerona/glae094.
5
Using claims data to predict dependency in activities of daily living as a proxy for frailty.
Pharmacoepidemiol Drug Saf. 2015 Jan;24(1):59-66. doi: 10.1002/pds.3719. Epub 2014 Oct 21.
6
Claims-Based Frailty Index as a Measure of Dementia Severity in Medicare Claims Data.
J Gerontol A Biol Sci Med Sci. 2023 Oct 28;78(11):2145-2151. doi: 10.1093/gerona/glad166.
7
Validation of Claims-Based Frailty Index for Identifying Moderate-to-Severe Dementia in Medicare Beneficiaries.
J Am Med Dir Assoc. 2024 Oct;25(10):105176. doi: 10.1016/j.jamda.2024.105176. Epub 2024 Aug 3.
9
Assessment of HF Outcomes Using a Claims-Based Frailty Index.
JACC Heart Fail. 2020 Jun;8(6):481-488. doi: 10.1016/j.jchf.2019.12.012. Epub 2020 May 6.
10
Anorexia in Medicare Fee-for-Service Beneficiaries: A Claims-Based Analysis of Epidemiology and Mortality.
J Nutr Health Aging. 2023;27(3):184-191. doi: 10.1007/s12603-023-1882-4.

引用本文的文献

1
Frailty and Postoperative Complications in Older Adults With Nonmetastatic Breast Cancer.
JAMA Netw Open. 2025 Sep 2;8(9):e2531841. doi: 10.1001/jamanetworkopen.2025.31841.
2
What Do We Know About Prevention of Frailty in Women?
Am J Lifestyle Med. 2025 Aug 29:15598276251370606. doi: 10.1177/15598276251370606.
3
Outcomes After Transcatheter Aortic Valve Replacement Among Medicare Beneficiaries: The Impact of Frailty and Social Vulnerability.
Struct Heart. 2025 Jun 24;9(8):100685. doi: 10.1016/j.shj.2025.100685. eCollection 2025 Aug.
4
Clinical Outcomes of Switching From Warfarin to Apixaban or Rivaroxaban in Patients With Atrial Fibrillation: A Nationwide Multidatabase Study.
Circ Cardiovasc Qual Outcomes. 2025 Sep;18(9):e011890. doi: 10.1161/CIRCOUTCOMES.124.011890. Epub 2025 Aug 27.

本文引用的文献

1
The effect of frailty on residential/nursing home admission in the Netherlands independent of chronic diseases and functional limitations.
Eur J Ageing. 2005 Nov 9;2(4):264-274. doi: 10.1007/s10433-005-0011-z. eCollection 2005 Dec.
2
Development of a Claims-based Frailty Indicator Anchored to a Well-established Frailty Phenotype.
Med Care. 2017 Jul;55(7):716-722. doi: 10.1097/MLR.0000000000000729.
5
Associations of frailty with health care costs--results of the ESTHER cohort study.
BMC Health Serv Res. 2016 Apr 14;16:128. doi: 10.1186/s12913-016-1360-3.
7
Predictive validity of a frailty measure (GFI) and a case complexity measure (IM-E-SA) on healthcare costs in an elderly population.
J Psychosom Res. 2015 Nov;79(5):404-11. doi: 10.1016/j.jpsychores.2015.09.015. Epub 2015 Oct 5.
8
Developing and validating a risk prediction model for acute care based on frailty syndromes.
BMJ Open. 2015 Oct 21;5(10):e008457. doi: 10.1136/bmjopen-2015-008457.
9
Quantifying the prevalence of frailty in English hospitals.
BMJ Open. 2015 Oct 21;5(10):e008456. doi: 10.1136/bmjopen-2015-008456.
10
Are Performance Measures Necessary to Predict Loss of Independence in Elderly People?
J Gerontol A Biol Sci Med Sci. 2016 Jan;71(1):84-9. doi: 10.1093/gerona/glv096. Epub 2015 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验