Lee Sunyoung, Park Hayoung, Kim Jae Young, Kim Jihoon, Choi Min-Ju, Han Sangwook, Kim Sewon, Kim Wonju, Jang Ho Won, Park Jungwon, Kang Kisuk
Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea.
Nat Commun. 2024 Sep 11;15(1):7947. doi: 10.1038/s41467-024-52226-4.
A critical bottleneck toward all-solid-state batteries lies in how the solid(electrode)-solid(electrolyte) interface is fabricated and maintained over repeated cycles. Conventional composite cathodes, with crystallographically distinct electrode/electrolyte interfaces of random particles, create complexities with varying (electro)chemical compatibilities. To address this, we employ an epitaxial model system where the crystal orientations of cathode and solid electrolyte are precisely controlled, and probe the interfaces in real-time during co-sintering by in situ electron microscopy. The interfacial reaction is highly dependent on crystal orientation/alignment, especially the availability of open ion channels. Interfaces bearing open ion paths of NCM are more susceptible to interdiffusion, but stabilize with the early formed passivation layer. Conversely, interfaces with closed ion pathway exhibit stability at intermediate temperatures, but deteriorate rapidly at high temperature due to oxygen evolution, increasing interfacial resistance. The elucidation of these distinct interfacial behaviors emphasizes the need for decoupling collective interfacial properties to enable rational design in solid-state batteries.
全固态电池面临的一个关键瓶颈在于如何在反复循环过程中制造并维持固体(电极)-固体(电解质)界面。传统的复合阴极具有随机颗粒的晶体学上不同的电极/电解质界面,会因(电)化学兼容性的变化而产生复杂性。为了解决这个问题,我们采用了一个外延模型系统,其中阴极和固体电解质的晶体取向得到精确控制,并通过原位电子显微镜在共烧结过程中实时探测界面。界面反应高度依赖于晶体取向/排列,特别是开放离子通道的可用性。具有NCM开放离子路径的界面更容易发生互扩散,但会随着早期形成的钝化层而稳定下来。相反,具有封闭离子通道的界面在中等温度下表现出稳定性,但在高温下由于析氧而迅速恶化,增加了界面电阻。对这些不同界面行为的阐明强调了需要将集体界面性质解耦,以便在固态电池中进行合理设计。