Suppr超能文献

从纳米级界面特性描述到全固态电池的可持续储能。

From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries.

机构信息

Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA.

Program of Chemical Engineering, University of California San Diego, La Jolla, CA, USA.

出版信息

Nat Nanotechnol. 2020 Mar;15(3):170-180. doi: 10.1038/s41565-020-0657-x. Epub 2020 Mar 10.

Abstract

The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to tremendous progress in the development of all-solid-state batteries (ASSBs). Though promising, they still face barriers that limit their practical application, such as poor interfacial stability, scalability challenges and production safety. Additionally, efforts to develop sustainable manufacturing of lithium ion batteries are still lacking, with no prevailing strategy developed yet to handle recyclability of ASSBs. To date, most SSE research has been largely focused on the discovery of novel electrolytes. Recent review articles have extensively examined a broad spectrum of these SSEs using evaluation factors such as conductivity and chemical stability. Recognizing this, in this Review we seek to evaluate SSEs beyond conventional factors and offer a perspective on various bulk, interface and nanoscale phenomena that require urgent attention within the scientific community. We provide a realistic assessment of the current state-of-the-art characterization techniques and evaluate future full cell ASSB prototyping strategies. We hope to offer rational solutions to overcome some major fundamental obstacles faced by the ASSB community, as well as potential strategies toward a sustainable ASSB recycling model.

摘要

最近发现的高导电性固态电解质(SSE)在全固态电池(ASSB)的发展中取得了巨大的进展。尽管前景广阔,但它们仍然面临着限制其实际应用的障碍,例如界面稳定性差、可扩展性挑战和生产安全问题。此外,开发锂离子电池可持续制造的努力仍然不足,目前还没有开发出一种普遍的策略来处理 ASSB 的可回收性。迄今为止,大多数 SSE 研究主要集中在新型电解质的发现上。最近的综述文章广泛研究了这些 SSE 的广泛应用,使用了电导率和化学稳定性等评价因素。有鉴于此,在这篇综述中,我们试图超越传统因素来评估 SSE,并对科学界迫切需要关注的各种体相、界面和纳米尺度现象进行评估。我们对当前最先进的特性分析技术进行了现实的评估,并评估了未来全电池 ASSB 原型设计策略。我们希望为克服 ASSB 面临的一些主要基础障碍以及建立可持续的 ASSB 回收模型提供合理的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验