Suppr超能文献

基于改良 GLIM 标准的列线图用于预测接受手术切除的胃癌患者的生存情况。

A modified GLIM criteria-based nomogram for the survival prediction of gastric cancer patients undergoing surgical resection.

机构信息

Department of Clinical Nutrition, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.

Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.

出版信息

BMC Gastroenterol. 2024 Sep 11;24(1):307. doi: 10.1186/s12876-024-03395-5.

Abstract

BACKGROUND

This study aimed to develop a comprehensive model based on five GLIM variables to predict the individual survival and provide more appropriate patient counseling.

METHODS

This retrospective cohort study included 301 gastric cancer (GC) patients undergoing radical resection. C-reactive protein (CRP) as an inflammatory marker was included in GLIM criteria and a nomogram for predicting 5-year overall survival (OS) in GC patients was established. The Bootstrap repeated sampling for 1000 times was used for internal validation.

RESULTS

Of the total 301 patients, 20 (6.64%) died within 5 years. CRP improved the sensitivity and accuracy of the survival prediction model (AUC = 0.782, 0.694 to 0.869 for the model without CRP; AUC = 0.880, 0.809 to 0.950 for the model adding CRP). Besides, a GLIM-based nomogram was established with an AUC of 0.889. The C-index for predicting OS was 0.878 (95% CI: 0.823 to 0.934), and the calibration curve fitted well. Decision curve analysis (DCA) showed the clinical utility of the nomogram based on GLIM.

CONCLUSION

The addition of CRP improved the sensitivity and accuracy of the survival prediction model. The 5-year survival probability of GC patients undergoing radical resection can be reliably predicted by the nomogram presented in this study.

摘要

背景

本研究旨在基于 GLIM 的五个变量建立一个综合模型,以预测个体生存情况,并为患者提供更合适的咨询建议。

方法

本回顾性队列研究纳入了 301 例接受根治性切除术的胃癌(GC)患者。本研究将 C 反应蛋白(CRP)这一炎症标志物纳入 GLIM 标准,并建立了一个预测 GC 患者 5 年总生存率(OS)的列线图。通过 Bootstrap 重复抽样进行了 1000 次内部验证。

结果

在总共 301 例患者中,20 例(6.64%)在 5 年内死亡。CRP 提高了生存预测模型的敏感性和准确性(无 CRP 模型的 AUC 为 0.782,0.694 至 0.869;添加 CRP 模型的 AUC 为 0.880,0.809 至 0.950)。此外,还建立了一个基于 GLIM 的列线图,其 AUC 为 0.889。预测 OS 的 C 指数为 0.878(95%CI:0.823 至 0.934),校准曲线拟合良好。决策曲线分析(DCA)表明,基于 GLIM 的列线图具有临床实用性。

结论

添加 CRP 提高了生存预测模型的敏感性和准确性。本研究提出的列线图可可靠预测接受根治性切除术的 GC 患者的 5 年生存率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f45/11389597/d1482b3c22cc/12876_2024_3395_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验