Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700 108, India.
Univeristy of Pennsylvania, Philadelphia, 19104, USA.
Eur J Med Res. 2024 Sep 11;29(1):458. doi: 10.1186/s40001-024-02047-4.
DNA methylation showed notable potential to act as a diagnostic marker in many cancers. Many studies proposed DNA methylation biomarker in OSCC detection, while most of these studies are limited to specific cohorts or geographical location. However, the generalizability of DNA methylation as a diagnostic marker in oral cancer across different geographical locations is yet to be investigated.
We used genome-wide methylation data from 384 oral cavity cancer and normal tissues from TCGA HNSCC and eastern India. The common differentially methylated CpGs in these two cohorts were used to develop an Elastic-net model that can be used for the diagnosis of OSCC. The model was validated using 812 HNSCC and normal samples from different anatomical sites of oral cavity from seven countries. Droplet Digital PCR of methyl-sensitive restriction enzyme digested DNA (ddMSRE) was used for quantification of methylation and validation of the model with 22 OSCC and 22 contralateral normal samples. Additionally, pyrosequencing was used to validate the model using 46 OSCC and 25 adjacent normal and 21 contralateral normal tissue samples.
With ddMSRE, our model showed 91% sensitivity, 100% specificity, and 95% accuracy in classifying OSCC from the contralateral normal tissues. Validation of the model with pyrosequencing also showed 96% sensitivity, 91% specificity, and 93% accuracy for classifying the OSCC from contralateral normal samples, while in case of adjacent normal samples we found similar sensitivity but with 20% specificity, suggesting the presence of early disease methylation signature at the adjacent normal samples. Methylation array data of HNSCC and normal tissues from different geographical locations and different anatomical sites showed comparable sensitivity, specificity, and accuracy in detecting oral cavity cancer with across. Similar results were also observed for different stages of oral cavity cancer.
Our model identified crucial genomic regions affected by DNA methylation in OSCC and showed similar accuracy in detecting oral cancer across different geographical locations. The high specificity of this model in classifying contralateral normal samples from the oral cancer compared to the adjacent normal samples suggested applicability of the model in early detection.
DNA 甲基化在许多癌症中作为诊断标志物具有显著的潜力。许多研究提出了 OSCC 检测中的 DNA 甲基化生物标志物,而这些研究大多局限于特定的队列或地理位置。然而,DNA 甲基化作为一种诊断标志物在不同地理位置的口腔癌中的通用性仍有待研究。
我们使用了来自 TCGA HNSCC 和印度东部的 384 个口腔癌和正常组织的全基因组甲基化数据。这些两个队列中的常见差异甲基化 CpG 被用于开发一个可以用于 OSCC 诊断的弹性网络模型。该模型使用来自七个国家的口腔不同解剖部位的 812 个 HNSCC 和正常样本进行了验证。使用甲基敏感限制性内切酶消化 DNA 的液滴数字 PCR(ddMSRE)对甲基化进行定量,并使用 22 个 OSCC 和 22 个对侧正常样本对模型进行验证。此外,使用 pyrosequencing 对模型进行了验证,使用 46 个 OSCC 和 25 个相邻正常和 21 个对侧正常组织样本。
使用 ddMSRE,我们的模型在将 OSCC 与对侧正常组织进行分类时,显示出 91%的灵敏度、100%的特异性和 95%的准确率。使用 pyrosequencing 对模型进行验证时,也显示出 96%的灵敏度、91%的特异性和 93%的准确率,用于将 OSCC 与对侧正常样本进行分类,而在相邻正常样本中,我们发现了类似的灵敏度,但特异性为 20%,这表明在相邻正常样本中存在早期疾病甲基化特征。来自不同地理位置和不同解剖部位的 HNSCC 和正常组织的甲基化阵列数据在检测口腔癌方面具有相似的敏感性、特异性和准确性。对于不同阶段的口腔癌,也观察到了类似的结果。
我们的模型确定了 OSCC 中受 DNA 甲基化影响的关键基因组区域,并显示出在不同地理位置检测口腔癌的相似准确性。该模型在将口腔癌与对侧正常样本进行分类时的特异性高于与相邻正常样本的特异性,这表明该模型在早期检测中的适用性。