College of Forestry, Gansu Agricultural University, Lanzhou, China.
UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
Physiol Plant. 2024 Sep-Oct;176(5):e14476. doi: 10.1111/ppl.14476.
Drought stress is a predominant abiotic factor leading to decreased alfalfa yield. Genomic ploidy differences contribute to varying adaptation mechanisms of different alfalfa cultivars to drought conditions. This study employed a multi-omics approach to characterize the molecular basis of drought tolerance in a tetraploid variant of alfalfa (Medicago sativa, Xinjiang-Daye). Under drought treatment, a total of 4446 genes, 859 proteins, and 524 metabolites showed significant differences in abundance. Integrative analysis of the multi-omics data revealed that regulatory modules involved in flavonoid biosynthesis, plant hormone signalling transduction, linoleic acid metabolism, and amino acid biosynthesis play crucial roles in alfalfa adaptation to drought stress. The severity of drought led to the substantial accumulation of flavonoids, plant hormones, free fatty acids, amino acids, and their derivatives in the leaves. Genes such as PAL, 4CL, CHI, CHS, PP2C, ARF_3, and AHP_4 play pivotal regulatory roles in flavonoid biosynthesis and hormone signalling pathways. Differential expression of the LOX gene emerged as a key factor in the elevated levels of free fatty acids. Upregulation of P5CS_1 and GOT1/2 contributed significantly to the accumulation of Pro and Phe contents. ERF19 emerged as a principal positive regulator governing the synthesis of the aforementioned compounds. Furthermore, observations suggest that Xinjiang-Daye alfalfa may exhibit widespread post-transcriptional regulatory mechanisms in adapting to drought stress. The study findings unveil the critical mechanisms by which Xinjiang-Daye alfalfa adapts to drought stress, offering novel insights for the improvement of alfalfa germplasm resources.
干旱胁迫是导致苜蓿产量下降的主要非生物因素。基因组倍性差异导致不同苜蓿品种对干旱条件的适应机制不同。本研究采用多组学方法研究四倍体苜蓿(Medicago sativa,Xinjiang-Daye)对干旱胁迫的耐受分子基础。在干旱处理下,共有 4446 个基因、859 个蛋白质和 524 个代谢物的丰度有显著差异。多组学数据的综合分析表明,参与类黄酮生物合成、植物激素信号转导、亚油酸代谢和氨基酸生物合成的调控模块在苜蓿适应干旱胁迫中起关键作用。干旱胁迫的严重程度导致叶片中类黄酮、植物激素、游离脂肪酸、氨基酸及其衍生物的大量积累。PAL、4CL、CHI、CHS、PP2C、ARF_3 和 AHP_4 等基因在类黄酮生物合成和激素信号通路中发挥重要的调控作用。LOX 基因的差异表达是游离脂肪酸水平升高的关键因素。P5CS_1 和 GOT1/2 的上调对 Pro 和 Phe 含量的积累有重要贡献。ERF19 是调控上述化合物合成的主要正调控因子。此外,研究结果表明,Xinjiang-Daye 苜蓿可能在适应干旱胁迫过程中广泛存在转录后调控机制。本研究揭示了 Xinjiang-Daye 苜蓿适应干旱胁迫的关键机制,为苜蓿种质资源的改良提供了新的思路。