Suppr超能文献

基于时空多模态注意力网络的锂离子电池剩余使用寿命预测

Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks.

作者信息

Suh Sungho, Mittal Dhruv Aditya, Bello Hymalai, Zhou Bo, Jha Mayank Shekhar, Lukowicz Paul

机构信息

German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany.

Department of Computer Science, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.

出版信息

Heliyon. 2024 Aug 20;10(16):e36236. doi: 10.1016/j.heliyon.2024.e36236. eCollection 2024 Aug 30.

Abstract

Lithium-ion batteries are widely used in various applications, including electric vehicles and renewable energy storage. The prediction of the remaining useful life (RUL) of batteries is crucial for ensuring reliable and efficient operation, as well as reducing maintenance costs. However, determining the life cycle of batteries in real-world scenarios is challenging, and existing methods have limitations in predicting the number of cycles iteratively. In addition, existing works often oversimplify the datasets, neglecting important features of the batteries such as temperature, internal resistance, and material type. To address these limitations, this paper proposes a two-stage RUL prediction scheme for Lithium-ion batteries using a spatio-temporal multimodal attention network (ST-MAN). The proposed ST-MAN is to capture the complex spatio-temporal dependencies in the battery data, including the features that are often neglected in existing works. Despite operating without prior knowledge of end-of-life (EOL) events, our method consistently achieves lower error rates, boasting mean absolute error (MAE) and mean square error (MSE) of 0.0275 and 0.0014, respectively, compared to existing convolutional neural networks (CNN) and long short-term memory (LSTM)-based methods. The proposed method has the potential to improve the reliability and efficiency of battery operations and is applicable in various industries.

摘要

锂离子电池广泛应用于各种领域,包括电动汽车和可再生能源存储。电池剩余使用寿命(RUL)的预测对于确保可靠高效运行以及降低维护成本至关重要。然而,在实际场景中确定电池的生命周期具有挑战性,并且现有方法在迭代预测循环次数方面存在局限性。此外,现有工作常常过度简化数据集,忽略了电池的重要特征,如温度、内阻和材料类型。为了解决这些局限性,本文提出了一种使用时空多模态注意力网络(ST-MAN)的锂离子电池两阶段RUL预测方案。所提出的ST-MAN旨在捕捉电池数据中复杂的时空依赖性,包括现有工作中经常被忽略的特征。尽管在没有寿命结束(EOL)事件先验知识的情况下运行,但与现有的基于卷积神经网络(CNN)和长短期记忆(LSTM)的方法相比,我们的方法始终实现更低的错误率,平均绝对误差(MAE)和均方误差(MSE)分别为0.0275和0.0014。所提出的方法有潜力提高电池运行的可靠性和效率,并适用于各种行业。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b6d/11388592/19ef47c263aa/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验