Dai YunFei, Liu PengFei, Hou WenQing, Kadier Kaisaierjiang, Mu ZhengYang, Lu Zang, Chen PeiPei, Ma Xiang, Dai JianGuo
College of Information Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
Heliyon. 2024 Aug 3;10(16):e35631. doi: 10.1016/j.heliyon.2024.e35631. eCollection 2024 Aug 30.
One of the most common cardiovascular diseases is coronary artery disease (CAD). Thus, it is crucial for early CAD diagnosis to control disease progression. Computer-aided CAD detection often converts heart sounds into graphics for analysis. However, this method relies heavily on the subjective experience of experts. Therefore, in this study, we proposed a method for CAD detection using raw heart sound signals by constructing a fusion framework with two CAD detection models: a multidomain feature model and a medical multidomain feature fusion model. We collected heart sound signal datasets from 400 participants, extracting 206 multidomain features and 126 medical multidomain features. The designed framework fused the same one-dimensional deep learning features with different multidomain features for CAD detection. The experimental results showed that the multidomain feature model and the medical multidomain feature fusion model achieved areas under the curve (AUC) of 94.7 % and 92.7 %, respectively, demonstrating the effectiveness of the fusion framework in integrating one-dimensional and cross-domain heart sound features through deep learning algorithms, providing an effective solution for noninvasive CAD detection.
最常见的心血管疾病之一是冠状动脉疾病(CAD)。因此,早期CAD诊断对于控制疾病进展至关重要。计算机辅助CAD检测通常将心音转换为图形进行分析。然而,这种方法严重依赖专家的主观经验。因此,在本研究中,我们提出了一种使用原始心音信号进行CAD检测的方法,通过构建一个融合框架,该框架包含两个CAD检测模型:多域特征模型和医学多域特征融合模型。我们收集了400名参与者的心音信号数据集,提取了206个多域特征和126个医学多域特征。所设计的框架将相同的一维深度学习特征与不同的多域特征进行融合以进行CAD检测。实验结果表明,多域特征模型和医学多域特征融合模型的曲线下面积(AUC)分别达到了94.7%和92.7%,证明了融合框架通过深度学习算法整合一维和跨域心音特征的有效性,为无创CAD检测提供了一种有效的解决方案。