Suppr超能文献

转向免疫抑制性肿瘤:解析胰腺癌中与免疫衰老相关的微环境和预后特征,其中葡萄糖转运蛋白1(GLUT1)导致吉西他滨耐药。

Turning to immunosuppressive tumors: Deciphering the immunosenescence-related microenvironment and prognostic characteristics in pancreatic cancer, in which GLUT1 contributes to gemcitabine resistance.

作者信息

Lu Si-Yuan, Xu Qiong-Cong, Fang De-Liang, Shi Yin-Hao, Zhu Ying-Qin, Liu Zhi-De, Ma Ming-Jian, Ye Jing-Yuan, Yin Xiao Yu

机构信息

Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.

出版信息

Heliyon. 2024 Aug 22;10(17):e36684. doi: 10.1016/j.heliyon.2024.e36684. eCollection 2024 Sep 15.

Abstract

Increasing evidence indicates that the remodeling of immune microenvironment heterogeneity influences pancreatic cancer development, as well as sensitivity to chemotherapy and immunotherapy. However, a gap remains in the exploration of the immunosenescence microenvironment in pancreatic cancer. In this study, we identified two immunosenescence-associated isoforms (IMSP1 and IMSP2), with consequential differences in prognosis and immune cell infiltration. We constructed the MLIRS score, a hazard score system with robust prognostic performance (area under the curve, AUC = 0.91), based on multiple machine learning algorithms (101 cross-validation methods). Patients in the high MLIRS score group had worse prognosis (P < 0.0001) and lower abundance of immune cell infiltration. Conversely, the low MLIRS score group showed better sensitivity to chemotherapy and immunotherapy. Additionally, our MLIRS system outperformed 68 other published signatures. We identified the immunosenescence microenvironmental windsock GLUT1 with certain co-expression properties with immunosenescence markers. We further demonstrated its positive modulation ability of proliferation, migration, and gemcitabine resistance in pancreatic cancer cells. To conclude, our study focused on training of composite machine learning algorithms in multiple datasets to develop a robust machine learning modeling system based on immunosenescence and to identify an immunosenescence-related microenvironment windsock, providing direction and guidance for clinical prediction and application.

摘要

越来越多的证据表明,免疫微环境异质性的重塑会影响胰腺癌的发展以及对化疗和免疫治疗的敏感性。然而,在胰腺癌免疫衰老微环境的探索方面仍存在空白。在本研究中,我们鉴定出两种与免疫衰老相关的亚型(IMSP1和IMSP2),其在预后和免疫细胞浸润方面存在显著差异。我们基于多种机器学习算法(101种交叉验证方法)构建了MLIRS评分,这是一种具有强大预后性能的风险评分系统(曲线下面积,AUC = 0.91)。MLIRS评分高的组患者预后较差(P < 0.0001),免疫细胞浸润丰度较低。相反,MLIRS评分低的组对化疗和免疫治疗表现出更好的敏感性。此外,我们的MLIRS系统优于其他68种已发表的特征。我们鉴定出免疫衰老微环境风向标GLUT1,其与免疫衰老标志物具有一定的共表达特性。我们进一步证明了其对胰腺癌细胞增殖、迁移和吉西他滨耐药性的正向调节能力。总之,我们的研究专注于在多个数据集中训练复合机器学习算法,以开发基于免疫衰老的强大机器学习建模系统,并识别与免疫衰老相关的微环境风向标,为临床预测和应用提供方向和指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8576/11388732/be6bf420ceab/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验