Suppr超能文献

综合机器学习生存框架在大型多中心队列中为胰腺癌开发共识模型。

Comprehensive machine-learning survival framework develops a consensus model in large-scale multicenter cohorts for pancreatic cancer.

机构信息

Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China.

出版信息

Elife. 2022 Oct 25;11:e80150. doi: 10.7554/eLife.80150.

Abstract

As the most aggressive tumor, the outcome of pancreatic cancer (PACA) has not improved observably over the last decade. Anatomy-based TNM staging does not exactly identify treatment-sensitive patients, and an ideal biomarker is urgently needed for precision medicine. Based on expression files of 1280 patients from 10 multicenter cohorts, we screened 32 consensus prognostic genes. Ten machine-learning algorithms were transformed into 76 combinations, of which we selected the optimal algorithm to construct an artificial intelligence-derived prognostic signature (AIDPS) according to the average C-index in the nine testing cohorts. The results of the training cohort, nine testing cohorts, Meta-Cohort, and three external validation cohorts (290 patients) consistently indicated that AIDPS could accurately predict the prognosis of PACA. After incorporating several vital clinicopathological features and 86 published signatures, AIDPS exhibited robust and dramatically superior predictive capability. Moreover, in other prevalent digestive system tumors, the nine-gene AIDPS could still accurately stratify the prognosis. Of note, our AIDPS had important clinical implications for PACA, and patients with low AIDPS owned a dismal prognosis, higher genomic alterations, and denser immune cell infiltrates as well as were more sensitive to immunotherapy. Meanwhile, the high AIDPS group possessed observably prolonged survival, and panobinostat may be a potential agent for patients with high AIDPS. Overall, our study provides an attractive tool to further guide the clinical management and individualized treatment of PACA.

摘要

作为最具侵袭性的肿瘤,过去十年中胰腺癌(PACA)的预后并未明显改善。基于解剖学的 TNM 分期并不能准确识别治疗敏感的患者,因此迫切需要一种理想的生物标志物用于精准医学。本研究基于来自 10 个多中心队列的 1280 名患者的表达谱数据,筛选出 32 个共识预后基因。我们将 10 种机器学习算法转化为 76 种组合,根据 9 个测试队列中的平均 C 指数选择最优算法来构建人工智能衍生预后签名(AIDPS)。训练队列、9 个测试队列、Meta 队列和 3 个外部验证队列(290 名患者)的结果一致表明,AIDPS 可以准确预测 PACA 的预后。在纳入几个重要的临床病理特征和 86 个已发表的特征后,AIDPS 表现出更强有力且显著优越的预测能力。此外,在其他常见的消化系统肿瘤中,九基因 AIDPS 仍然可以准确分层预后。值得注意的是,我们的 AIDPS 对 PACA 具有重要的临床意义,AIDPS 低的患者预后不良,基因组改变更高,免疫细胞浸润更密集,对免疫治疗更敏感。同时,AIDPS 高的患者具有明显延长的生存时间,帕比司他可能是 AIDPS 高的患者的一种潜在治疗药物。总的来说,我们的研究为进一步指导 PACA 的临床管理和个体化治疗提供了一种有吸引力的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3e0/9596158/95969b6dba9b/elife-80150-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验