Chandra Sekhar Bongu, Soliman Abdelrahman, Arsalan Muhammad, Alsharaeh Edreese H
College of Science and General Studies, AlFaisal University PO Box 50927 Riyadh 11533 Saudi Arabia
EXPEC Advanced Research Center, Saudi Aramco P.O. Box 5000 Dhahran 31311 Saudi Arabia.
Nanoscale Adv. 2024 Aug 29;6(22):5612-24. doi: 10.1039/d4na00424h.
Two-dimensional atomically thick materials including graphene, BN, and molybdenum disulfide (MoS) have been investigated as possible energy storage materials, because of their large specific surface area, potential redox activity, and mechanical stability. Unfortunately, these materials cannot reach their full potential due to their low electrical conductivity and layered structural restacking. These problems have been somewhat resolved in the past by composite electrodes composed of a graphene and MoS mixture; however, insufficient mixing at the nanoscale still limits performance. Here, we examined lithium-ion battery electrodes and reported three composites made using a basic ball milling technique and sonication method. The 5% BN-G@MoS-50@50 composite obtained has a homogeneous distribution of MoS on the graphene sheet and H-BN with high crystallinity. Compared to the other two composites (5% BN-G@MoS-10@90 and 5% BN-G@MoS-90@10), the 5% BN-G@MoS-50@50 composite electrode exhibits a high specific capacity of 765 mA h g and a current density of 100 mA g in batteries. Additionally, the 5% BN-G@MoS-50@50 composite electrode displays an excellent rate capability (453 mA h g at a current density of 1000 mA g) at a high temperature of 70 °C, thanks to h-BN that allows reliable and safe operation of lithium-ion batteries. Our research may pave the way for the sensible design of different anode materials, including 2D materials (5% BN-G@MoS-50@50) for high-performance LIBs and other energy-related fields.
包括石墨烯、氮化硼和二硫化钼(MoS)在内的二维原子级厚度材料,因其具有大比表面积、潜在的氧化还原活性和机械稳定性,已被作为潜在的储能材料进行研究。不幸的是,由于这些材料的低电导率和层状结构的重新堆叠,它们无法充分发挥其潜力。过去,由石墨烯和MoS混合物组成的复合电极在一定程度上解决了这些问题;然而,纳米级的混合不充分仍然限制了性能。在此,我们研究了锂离子电池电极,并报道了使用基本球磨技术和超声处理方法制备的三种复合材料。所获得的5% BN-G@MoS-50@50复合材料在石墨烯片和具有高结晶度的H-BN上具有均匀分布的MoS。与其他两种复合材料(5% BN-G@MoS-10@90和5% BN-G@MoS-90@10)相比,5% BN-G@MoS-50@50复合电极在电池中表现出765 mA h g的高比容量和100 mA g的电流密度。此外,由于h-BN允许锂离子电池可靠且安全地运行,5% BN-G@MoS-50@50复合电极在70°C的高温下显示出优异的倍率性能(在1000 mA g的电流密度下为453 mA h g)。我们的研究可能为合理设计不同的负极材料铺平道路,包括用于高性能锂离子电池和其他能源相关领域的二维材料(5% BN-G@MoS-50@50)。