Suppr超能文献

基于机器学习的 SERS 平台,用于精确检测和分析血管钙化。

A machine learning-driven SERS platform for precise detection and analysis of vascular calcification.

机构信息

Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.

Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China.

出版信息

Anal Methods. 2024 Oct 17;16(40):6829-6838. doi: 10.1039/d4ay01061b.

Abstract

Vascular calcification (VC) significantly increases the incidence and mortality rates of cardiovascular diseases, severely threatening public health as a global issue. Currently, there are no effective methods to prevent and treat vascular calcification. This study proposes a machine learning-assisted surface-enhanced Raman scattering (SERS) technique for label-free, highly sensitive analysis of VC rat serum. We prepared gold nanobipyramid (GNBP) substrates using seed-mediated and liquid-liquid interface self-assembly methods and measured the SERS spectra of the serum. The collected spectral data were processed using a Principal Component Analysis (PCA)-Linear Discriminant Analysis (LDA) model to achieve effective sample differentiation. In this analysis model, GNBP substrates enabled rapid, sensitive, and label-free serum spectral detection, achieving classification accuracy, sensitivity, and specificity of 96.0%, and an AUC value of 0.98, significantly outperforming currently used machine learning methods. By analyzing the PCA loading plots, key spectral features that distinguished VC were successfully captured. This study demonstrates that combining SERS technology with machine learning provides a new method and foundation for real-time diagnosis and identification of VC, showcasing the significant advantages of GNBP substrates in high-sensitivity and high-specificity detection, potentially improving the early diagnosis and treatment of VC significantly.

摘要

血管钙化(VC)显著增加了心血管疾病的发病率和死亡率,作为一个全球性问题,严重威胁着公众健康。目前,还没有有效的方法可以预防和治疗血管钙化。本研究提出了一种基于机器学习的表面增强拉曼散射(SERS)技术,用于无标记、高灵敏度地分析 VC 大鼠血清。我们使用种子介导和液-液界面自组装方法制备了金纳米双锥(GNBP)基底,并测量了血清的 SERS 光谱。收集的光谱数据使用主成分分析(PCA)-线性判别分析(LDA)模型进行处理,以实现有效的样本区分。在这个分析模型中,GNBP 基底实现了快速、敏感和无标记的血清光谱检测,分类准确率、灵敏度和特异性分别达到 96.0%、96.0%和 96.0%,AUC 值为 0.98,显著优于目前使用的机器学习方法。通过分析 PCA 加载图,成功捕获了区分 VC 的关键光谱特征。本研究表明,将 SERS 技术与机器学习相结合,为 VC 的实时诊断和识别提供了一种新的方法和基础,展示了 GNBP 基底在高灵敏度和高特异性检测方面的显著优势,有望显著提高 VC 的早期诊断和治疗水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验