School of Information Engineering, Yangzhou Polytechnic Institute, Yangzhou, 225002, China.
Department of General Surgery, Nantong Haimen People's Hospital, Nantong, 226100, China.
Mikrochim Acta. 2024 Jun 22;191(7):415. doi: 10.1007/s00604-024-06508-9.
A novel approach is proposed leveraging surface-enhanced Raman spectroscopy (SERS) combined with machine learning (ML) techniques, principal component analysis (PCA)-centroid displacement-based nearest neighbor (CDNN). This label-free approach can identify slight abnormalities between SERS spectra of gastric lesions at different stages, offering a promising avenue for detection and prevention of precancerous lesion of gastric cancer (PLGC). The agaric-shaped nanoarray substrate was prepared using gas-liquid interface self-assembly and reactive ion etching (RIE) technology to measure SERS spectra of serum from mice model with gastric lesions at different stages, and then a SERS spectral recognition model was trained and constructed using the PCA-CDNN algorithm. The results showed that the agaric-shaped nanoarray substrate has good uniformity, stability, cleanliness, and SERS enhancement effect. The trained PCA-CDNN model not only found the most important features of PLGC, but also achieved satisfactory classification results with accuracy, area under curve (AUC), sensitivity, and specificity up to 100%. This demonstrated the enormous potential of this analysis platform in the diagnosis of PLGC.
提出了一种新的方法,利用表面增强拉曼光谱(SERS)结合机器学习(ML)技术,基于主成分分析(PCA)-质心位移的最近邻(CDNN)。这种无标记方法可以识别不同阶段胃病变的 SERS 光谱之间的细微异常,为检测和预防胃癌前病变(PLGC)提供了有希望的途径。采用气-液界面自组装和反应离子刻蚀(RIE)技术制备了蘑菇形纳米阵列衬底,用于测量不同阶段胃病变小鼠模型血清的 SERS 光谱,然后使用 PCA-CDNN 算法对 SERS 光谱识别模型进行训练和构建。结果表明,蘑菇形纳米阵列衬底具有良好的均匀性、稳定性、清洁性和 SERS 增强效果。经过训练的 PCA-CDNN 模型不仅找到了 PLGC 的最重要特征,而且还达到了 100%的准确率、曲线下面积(AUC)、灵敏度和特异性的满意分类结果。这表明该分析平台在 PLGC 诊断中具有巨大的潜力。