Suppr超能文献

基于机器学习的 SERS 分析平台,用于快速准确地检测胃癌癌前病变。

Machine learning-driven SERS analysis platform for rapid and accurate detection of precancerous lesions of gastric cancer.

机构信息

School of Information Engineering, Yangzhou Polytechnic Institute, Yangzhou, 225002, China.

Department of General Surgery, Nantong Haimen People's Hospital, Nantong, 226100, China.

出版信息

Mikrochim Acta. 2024 Jun 22;191(7):415. doi: 10.1007/s00604-024-06508-9.

Abstract

A novel approach is proposed leveraging surface-enhanced Raman spectroscopy (SERS) combined with machine learning (ML) techniques, principal component analysis (PCA)-centroid displacement-based nearest neighbor (CDNN). This label-free approach can identify slight abnormalities between SERS spectra of gastric lesions at different stages, offering a promising avenue for detection and prevention of precancerous lesion of gastric cancer (PLGC). The agaric-shaped nanoarray substrate was prepared using gas-liquid interface self-assembly and reactive ion etching (RIE) technology to measure SERS spectra of serum from mice model with gastric lesions at different stages, and then a SERS spectral recognition model was trained and constructed using the PCA-CDNN algorithm. The results showed that the agaric-shaped nanoarray substrate has good uniformity, stability, cleanliness, and SERS enhancement effect. The trained PCA-CDNN model not only found the most important features of PLGC, but also achieved satisfactory classification results with accuracy, area under curve (AUC), sensitivity, and specificity up to 100%. This demonstrated the enormous potential of this analysis platform in the diagnosis of PLGC.

摘要

提出了一种新的方法,利用表面增强拉曼光谱(SERS)结合机器学习(ML)技术,基于主成分分析(PCA)-质心位移的最近邻(CDNN)。这种无标记方法可以识别不同阶段胃病变的 SERS 光谱之间的细微异常,为检测和预防胃癌前病变(PLGC)提供了有希望的途径。采用气-液界面自组装和反应离子刻蚀(RIE)技术制备了蘑菇形纳米阵列衬底,用于测量不同阶段胃病变小鼠模型血清的 SERS 光谱,然后使用 PCA-CDNN 算法对 SERS 光谱识别模型进行训练和构建。结果表明,蘑菇形纳米阵列衬底具有良好的均匀性、稳定性、清洁性和 SERS 增强效果。经过训练的 PCA-CDNN 模型不仅找到了 PLGC 的最重要特征,而且还达到了 100%的准确率、曲线下面积(AUC)、灵敏度和特异性的满意分类结果。这表明该分析平台在 PLGC 诊断中具有巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验