Suppr超能文献

基于密度泛函理论计算和机器学习筛选用于将一氧化氮电还原为氨的银基单原子合金催化剂

Screening of Silver-Based Single-Atom Alloy Catalysts for NO Electroreduction to NH by DFT Calculations and Machine Learning.

作者信息

Liu Jieyu, Wang Shuoao, Tian Yunyan, Guo Haiqiang, Chen Xing, Lei Weiwei, Yu Yifu, Wang Changhong

机构信息

College of Engineering, Hebei Provincial Key Laboratory of Information Fusion and Intelligent Control, Hebei Normal University, Shijiazhuang, 050024, China.

Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, 300072, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414314. doi: 10.1002/anie.202414314. Epub 2024 Oct 30.

Abstract

Exploring NO reduction reaction (NORR) electrocatalysts with high activity and selectivity toward NH is essential for both NO removal and NH synthesis. Due to their superior electrocatalytic activities, single-atom alloy (SAA) catalysts have attracted considerable attention. However, the exploration of SAAs is hindered by a lack of fast yet reliable prediction of catalytic performance. To address this problem, we comprehensively screened a series of transition-metal atom doped Ag-based SAAs. This screening process involves regression machine learning (ML) algorithms and a compressed-sensing data-analytics approach parameterized with density-functional inputs. The results demonstrate that Cu/Ag and Zn/Ag can efficiently activate and hydrogenate NO with small Φ(η), a grand-canonical adaptation of the G(η) descriptor, and exhibit higher affinity to NO over H adatoms to suppress the competing hydrogen evolution reaction. The NH selectivity is mainly determined by the s orbitals of the doped single-atom near the Fermi level. The catalytic activity of SAAs is highly correlated with the local environment of the active site. We further quantified the relationship between the intrinsic features of these active sites and Φ(η). Our work clarifies the mechanism of NORR to NH and offers a design principle to guide the screen of highly active SAA catalysts.

摘要

探索对NH具有高活性和选择性的NO还原反应(NORR)电催化剂对于NO去除和NH合成均至关重要。由于其优异的电催化活性,单原子合金(SAA)催化剂已引起了相当大的关注。然而,由于缺乏对催化性能的快速且可靠的预测,SAA的探索受到了阻碍。为了解决这个问题,我们全面筛选了一系列过渡金属原子掺杂的Ag基SAA。该筛选过程涉及回归机器学习(ML)算法和用密度泛函输入参数化的压缩传感数据分析方法。结果表明,Cu/Ag和Zn/Ag可以用小的Φ(η)(G(η)描述符的巨正则适应)有效地活化和氢化NO,并对NO表现出比H吸附原子更高的亲和力,以抑制竞争性析氢反应。NH选择性主要由费米能级附近掺杂单原子的s轨道决定。SAA的催化活性与活性位点的局部环境高度相关。我们进一步量化了这些活性位点的内在特征与Φ(η)之间的关系。我们的工作阐明了NORR生成NH的机理,并提供了指导高活性SAA催化剂筛选的设计原则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验