Suppr超能文献

将主动学习与密度泛函理论相结合用于快速筛选一氧化碳转化为燃料过程中的单原子合金催化剂。

Integrating Active Learning and DFT for Fast-Tracking Single-Atom Alloy Catalysts in CO-to-Fuel Conversion.

作者信息

Song Xin, Pu Pengxin, Feng Haisong, Ding Hu, Deng Yuan, Ge Zhen, Zhao Shiquan, Liu Tianyong, Yang Yusen, Wei Min, Zhang Xin

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 2. doi: 10.1021/acsami.4c11695.

Abstract

Electrocatalytic carbon dioxide reduction (CORR) technology enables the conversion of excessive CO into high-value fuels and chemicals, thereby mitigating atmospheric CO concentrations and addressing energy scarcity. Single-atom alloys (SAAs) possess the potential to enhance the CORR performance by full utilization of atoms and breaking linear scaling relationships. However, quickly screening high-performance metal portfolios of SAAs remains a formidable challenge. In this study, we proposed an active learning (AL) framework to screen high-performance catalysts for CORR to yield fuels such as CH and CHOH. After four rounds of AL iterations, the ML model attained optimal prediction performance with the test set of approximately 0.94 and successful prediction was achieved for the binding free energy of *CHO, *COH, *CO, and *H on 380 catalyst surfaces with an accuracy within 0.20 eV. Subsequent analysis of the SAA catalysts' activity, selectivity, and stability led to the discovery of eight previously unexplored SAA catalysts for CORR. Notably, the surface activity of Ti@Cu(100), Au@Pt(100), and Ag@Pt(100) shines prominently. Utilizing DFT calculations, we elucidated the complete reaction pathway of the CORR on the surfaces of these catalysts, confirming their high catalytic activity with limiting potentials of -0.11, -0.34, and -0.46 eV, respectively, which are significantly lower than those of pure Cu catalysts. The results showcase the exceptional predictive prowess of AL, providing a valuable reference for the design of CORR catalysts.

摘要

电催化二氧化碳还原(CORR)技术能够将过量的CO转化为高价值燃料和化学品,从而降低大气中CO的浓度并解决能源短缺问题。单原子合金(SAA)具有通过充分利用原子和打破线性标度关系来提高CORR性能的潜力。然而,快速筛选SAA的高性能金属组合仍然是一项艰巨的挑战。在本研究中,我们提出了一种主动学习(AL)框架,用于筛选用于CORR的高性能催化剂,以生成CH和CHOH等燃料。经过四轮AL迭代,ML模型在测试集上达到了约0.94的最佳预测性能,并成功预测了380种催化剂表面上*CHO、*COH、CO和H的结合自由能,准确率在0.20 eV以内。随后对SAA催化剂的活性、选择性和稳定性进行分析,发现了八种以前未探索过的用于CORR的SAA催化剂。值得注意的是,Ti@Cu(100)、Au@Pt(100)和Ag@Pt(100)的表面活性尤为突出。利用密度泛函理论(DFT)计算,我们阐明了CORR在这些催化剂表面的完整反应途径,证实了它们具有高催化活性,其极限电位分别为-0.11、-0.34和-0.46 eV,显著低于纯Cu催化剂。结果展示了AL卓越的预测能力,为CORR催化剂的设计提供了有价值的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验