Suppr超能文献

跳出能量框框思考:用网状化学稳定和绿色化高能材料。

Thinking Outside the Energetic Box: Stabilizing and Greening High-Energy Materials with Reticular Chemistry.

作者信息

Lai Qi, Long Yangyang, Yin Ping, Shreeve Jean'ne M, Pang Siping

机构信息

School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.

Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States.

出版信息

Acc Chem Res. 2024 Oct 1;57(19):2790-2803. doi: 10.1021/acs.accounts.4c00330. Epub 2024 Sep 12.

Abstract

ConspectusReticular chemistry has provided intriguing opportunities for systematically designing porous materials with different pores by adjusting the building blocks. Among them, framework materials have demonstrated outstanding performance for the design of new functional materials used in a broad range of fields, including energetic materials. Energetic materials are widely used for rockets, satellites, mining, and tunneling. In terms of energetic materials, explosophores and nitrogen-rich heterocycles are fundamental building blocks for high-energy compounds. However, the traditional strategy of synthesizing HEDMs (high energy density materials) at the molecular level has faced the long-term challenge of balancing energy and stability. Inspired by reticular chemistry, nitrogen-rich heterocycles offer diverse nitrogen sites for designing diversified coordination interactions. Ionic bond interactions exist in a wide range of energetic salts. Furthermore, most metastable explosophores, e.g., nitro, nitramino, and amino groups, can form strong hydrogen-bonding networks. Based on these noncovalent interactions (such as coordination, ionic, and/or hydrogen bonds (HBs)) and/or covalent interactions can determine intermolecular packing/linkage of the energetic fuel and oxidizer components, reticular chemistry provides a new platform evolving from single-molecular design to various energetic frameworks (E of the energetic frameworks with superior comprehensive properties. For example, to achieve coordination with metals or introduce sufficient hydrogen bond donor/acceptor structural units, the host structure of energetic framework materials usually contains less oxygen-rich substituents such as nitro, so the host molecules of the framework, F) at the crystal level, which can enhance the integrated stabilities of EFs.Along with growing concerns about the environment and safety issues, considerable effort has been devoted to pursuing environmentally friendly and insensitive energetic materials. The newly emerging EFs are conducive to introducing explosophores into a green chemical pathway. Benefiting from these cross-disciplinary achievements, taming metastable energetic molecules in specific porous frameworks is a green strategy to desensitize energetic materials while concomitantly retaining excellent energetic properties, which has become one of the most forward and promising investigations. In the past decade, EFs have achieved further results in stabilizing and greening energetic materials using HBs, covalent bonds, and alkaline earth metal-involving coordination bonds to avoid heavy metal toxicity and to employ halogen-free oxidizers. Because this field is still expanding rapidly, it is of great value for researchers and possible users of the work to be able to view all the progress.Through this Account, we intend that more readers will become knowledgeable about EFs, including their definition, history, synthesis, properties, and possible applications. The aim of this Account is to present the latest advances in EFs in recent years and to offer a perspective on the future direction of this field.

摘要

概述

网状化学通过调整结构单元,为系统设计具有不同孔隙的多孔材料提供了有趣的机会。其中,骨架材料在设计广泛应用于包括含能材料在内的众多领域的新型功能材料方面表现出卓越性能。含能材料广泛用于火箭、卫星、采矿和隧道工程。就含能材料而言,爆炸基团和富氮杂环是高能化合物的基本结构单元。然而,在分子水平上合成高能量密度材料(HEDMs)的传统策略长期面临着平衡能量和稳定性的挑战。受网状化学的启发,富氮杂环为设计多样化的配位相互作用提供了多样的氮位点。离子键相互作用存在于多种含能盐中。此外,大多数亚稳的爆炸基团,如硝基、硝氨基和氨基,可形成强大的氢键网络。基于这些非共价相互作用(如配位、离子和/或氢键(HBs))和/或共价相互作用可决定含能燃料和氧化剂组分的分子间堆积/连接,网状化学提供了一个从单分子设计发展到各种含能骨架(EFs)的新平台,这些含能骨架具有优异的综合性能。例如,为了实现与金属的配位或引入足够的氢键供体/受体结构单元,含能骨架材料的主体结构通常含有较少的富氧取代基,如硝基,因此骨架的主体分子,在晶体水平上,这可以提高EFs的整体稳定性。

随着对环境和安全问题的日益关注,人们致力于研发环境友好且钝感的含能材料。新出现的EFs有助于将爆炸基团引入绿色化学途径。受益于这些跨学科成果,在特定多孔骨架中驯服亚稳含能分子是一种使含能材料钝感同时保留优异含能性能的绿色策略,这已成为最前沿且有前景的研究之一。在过去十年中,EFs在利用氢键、共价键和涉及碱土金属的配位键稳定和绿化含能材料方面取得了进一步成果,以避免重金属毒性并采用无卤氧化剂。由于该领域仍在迅速扩展,对于研究人员和该工作的潜在使用者来说,能够了解所有进展具有重要价值。

通过本综述,我们希望更多读者了解EFs,包括它们的定义、历史、合成、性质和可能的应用。本综述的目的是介绍近年来EFs的最新进展,并对该领域的未来方向提供一个展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验