Sanchez Juan, Dammann Lars, Gallardo Laura, Li Zhuoqing, Fröba Michael, Meißner Robert H, Stone Howard A, Huber Patrick
Institute for Materials and X-ray Physics, Hamburg University of Technology, Hamburg 21073, Germany.
Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2318386121. doi: 10.1073/pnas.2318386121. Epub 2024 Sep 12.
Capillarity-driven transport in nanoporous solids is widespread in nature and crucial for modern liquid-infused engineering materials. During imbibition, curved menisci driven by high negative Laplace pressures exert an enormous contractile load on the porous matrix. Due to the challenge of simultaneously monitoring imbibition and deformation with high spatial resolution, the resulting coupling of solid elasticity to liquid capillarity has remained largely unexplored. Here, we study water imbibition in mesoporous silica using optical imaging, gravimetry, and high-resolution dilatometry. In contrast to an expected Laplace pressure-induced contraction, we find a square-root-of-time expansion and an additional abrupt length increase when the menisci reach the top surface. The final expansion is absent when we stop the imbibition front inside the porous medium in a dynamic imbibition-evaporation equilibrium, as is typical for transpiration-driven hydraulic transport in plants, especially in trees. These peculiar deformation behaviors are validated by single-nanopore molecular dynamics simulations and described by a continuum model that highlights the importance of expansive surface stresses at the pore walls (Bangham effect) and the buildup or release of contractile Laplace pressures as menisci collectively advance, arrest, or disappear. Our model suggests that these observations apply to any imbibition process in nanopores, regardless of the liquid/solid combination, and that the Laplace contribution upon imbibition is precisely half that of vapor sorption, due to the linear pressure drop associated with viscous flow. Thus, simple deformation measurements can be used to quantify surface stresses and Laplace pressures or transport in a wide variety of natural and artificial porous media.
纳米多孔固体中由毛细作用驱动的传输在自然界广泛存在,对现代液体注入工程材料至关重要。在吸液过程中,由高负拉普拉斯压力驱动的弯曲弯月面会对多孔基质施加巨大的收缩载荷。由于难以同时以高空间分辨率监测吸液和变形,固体弹性与液体毛细作用之间的耦合作用在很大程度上仍未得到探索。在此,我们使用光学成像、重量分析法和高分辨率膨胀测量法研究了介孔二氧化硅中的水吸液现象。与预期的拉普拉斯压力引起的收缩相反,我们发现当弯月面到达顶面时,会出现时间平方根膨胀以及额外的突然长度增加。当我们在动态吸液 - 蒸发平衡中在多孔介质内部停止吸液前沿时,最终的膨胀现象消失,这在植物(尤其是树木)中由蒸腾驱动的水力传输中很常见。这些特殊的变形行为通过单纳米孔分子动力学模拟得到验证,并由一个连续介质模型进行描述,该模型突出了孔壁处膨胀表面应力(班汉姆效应)的重要性,以及随着弯月面集体前进、停止或消失时收缩拉普拉斯压力的积累或释放。我们的模型表明,这些观察结果适用于纳米孔中的任何吸液过程,无论液体/固体组合如何,并且由于与粘性流相关的线性压降,吸液时拉普拉斯压力的贡献恰好是蒸汽吸附时的一半。因此,简单的变形测量可用于量化各种天然和人造多孔介质中的表面应力、拉普拉斯压力或传输。