Suppr超能文献

水化固体。

Hydration solids.

机构信息

Department of Physics, Columbia University, New York, NY, USA.

Department of Biological Sciences, Columbia University, New York, NY, USA.

出版信息

Nature. 2023 Jul;619(7970):500-505. doi: 10.1038/s41586-023-06144-y. Epub 2023 Jun 7.

Abstract

Hygroscopic biological matter in plants, fungi and bacteria make up a large fraction of Earth's biomass. Although metabolically inert, these water-responsive materials exchange water with the environment and actuate movement and have inspired technological uses. Despite the variety in chemical composition, hygroscopic biological materials across multiple kingdoms of life exhibit similar mechanical behaviours including changes in size and stiffness with relative humidity. Here we report atomic force microscopy measurements on the hygroscopic spores of a common soil bacterium and develop a theory that captures the observed equilibrium, non-equilibrium and water-responsive mechanical behaviours, finding that these are controlled by the hydration force. Our theory based on the hydration force explains an extreme slowdown of water transport and successfully predicts a strong nonlinear elasticity and a transition in mechanical properties that differs from glassy and poroelastic behaviours. These results indicate that water not only endows biological matter with fluidity but also can-through the hydration force-control macroscopic properties and give rise to a 'hydration solid' with unusual properties. A large fraction of biological matter could belong to this distinct class of solid matter.

摘要

植物、真菌和细菌中的吸湿性生物物质构成了地球生物量的很大一部分。尽管这些物质在新陈代谢上是惰性的,但它们能与环境交换水分并引发运动,这启发了人们对其进行技术应用。尽管化学成分多种多样,但来自多个生命王国的吸湿性生物材料表现出相似的机械行为,包括大小和刚度随相对湿度的变化。在这里,我们报告了对一种常见土壤细菌的吸湿性孢子的原子力显微镜测量,并提出了一个理论,该理论可以捕捉到观察到的平衡、非平衡和对水响应的机械行为,发现这些行为是由水合力控制的。我们基于水合力的理论解释了水传输的极端减缓,并成功预测了强非线性弹性和机械性能的转变,这与玻璃态和多孔弹性行为不同。这些结果表明,水不仅赋予生物物质流动性,还可以通过水合力控制宏观性质,并产生具有特殊性质的“水化固体”。很大一部分生物物质可能属于这一独特的固体物质类别。

相似文献

1
Hydration solids.水化固体。
Nature. 2023 Jul;619(7970):500-505. doi: 10.1038/s41586-023-06144-y. Epub 2023 Jun 7.
2
Bacterial spores respond to humidity similarly to hydrogels.细菌孢子对湿度的响应与水凝胶类似。
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2320763121. doi: 10.1073/pnas.2320763121. Epub 2024 Feb 28.
8
Atomic force microscopy (AFM).原子力显微镜(AFM)。
Curr Protoc Microbiol. 2008 Feb;Chapter 2:Unit 2C.2. doi: 10.1002/9780471729259.mc02c02s8.

引用本文的文献

5
Deformation dynamics of nanopores upon water imbibition.水吸入时纳米孔的变形动力学
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2318386121. doi: 10.1073/pnas.2318386121. Epub 2024 Sep 12.
7
Bacterial spores respond to humidity similarly to hydrogels.细菌孢子对湿度的响应与水凝胶类似。
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2320763121. doi: 10.1073/pnas.2320763121. Epub 2024 Feb 28.

本文引用的文献

1
Mechanical computing.机械计算。
Nature. 2021 Oct;598(7879):39-48. doi: 10.1038/s41586-021-03623-y. Epub 2021 Oct 6.
3
The architecture of the Gram-positive bacterial cell wall.革兰氏阳性菌细胞壁的结构。
Nature. 2020 Jun;582(7811):294-297. doi: 10.1038/s41586-020-2236-6. Epub 2020 Apr 29.
4
The atypically high modulus of pollen exine.花粉外壁的非典型高模量。
J R Soc Interface. 2018 Sep 19;15(146):20180533. doi: 10.1098/rsif.2018.0533.
6
The biomass distribution on Earth.地球上的生物质分布。
Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6506-6511. doi: 10.1073/pnas.1711842115. Epub 2018 May 21.
7
Finite indentation of highly curved elastic shells.高度弯曲弹性壳的有限压痕
Proc Math Phys Eng Sci. 2018 Jan;474(2209):20170482. doi: 10.1098/rspa.2017.0482. Epub 2018 Jan 24.
8
Bacterial Spores in Food: Survival, Emergence, and Outgrowth.食品中的细菌孢子:生存、出现和生长。
Annu Rev Food Sci Technol. 2016;7:457-82. doi: 10.1146/annurev-food-041715-033144.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验