Department of Physics, Columbia University, New York, NY, USA.
Department of Biological Sciences, Columbia University, New York, NY, USA.
Nature. 2023 Jul;619(7970):500-505. doi: 10.1038/s41586-023-06144-y. Epub 2023 Jun 7.
Hygroscopic biological matter in plants, fungi and bacteria make up a large fraction of Earth's biomass. Although metabolically inert, these water-responsive materials exchange water with the environment and actuate movement and have inspired technological uses. Despite the variety in chemical composition, hygroscopic biological materials across multiple kingdoms of life exhibit similar mechanical behaviours including changes in size and stiffness with relative humidity. Here we report atomic force microscopy measurements on the hygroscopic spores of a common soil bacterium and develop a theory that captures the observed equilibrium, non-equilibrium and water-responsive mechanical behaviours, finding that these are controlled by the hydration force. Our theory based on the hydration force explains an extreme slowdown of water transport and successfully predicts a strong nonlinear elasticity and a transition in mechanical properties that differs from glassy and poroelastic behaviours. These results indicate that water not only endows biological matter with fluidity but also can-through the hydration force-control macroscopic properties and give rise to a 'hydration solid' with unusual properties. A large fraction of biological matter could belong to this distinct class of solid matter.
植物、真菌和细菌中的吸湿性生物物质构成了地球生物量的很大一部分。尽管这些物质在新陈代谢上是惰性的,但它们能与环境交换水分并引发运动,这启发了人们对其进行技术应用。尽管化学成分多种多样,但来自多个生命王国的吸湿性生物材料表现出相似的机械行为,包括大小和刚度随相对湿度的变化。在这里,我们报告了对一种常见土壤细菌的吸湿性孢子的原子力显微镜测量,并提出了一个理论,该理论可以捕捉到观察到的平衡、非平衡和对水响应的机械行为,发现这些行为是由水合力控制的。我们基于水合力的理论解释了水传输的极端减缓,并成功预测了强非线性弹性和机械性能的转变,这与玻璃态和多孔弹性行为不同。这些结果表明,水不仅赋予生物物质流动性,还可以通过水合力控制宏观性质,并产生具有特殊性质的“水化固体”。很大一部分生物物质可能属于这一独特的固体物质类别。