Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2403842121. doi: 10.1073/pnas.2403842121. Epub 2024 Sep 12.
Modern molecular microbiology elucidates the organizational principles of bacterial biofilms via detailed examination of the interplay between signaling and gene regulation. A complementary biophysical approach studies the mesoscopic dependencies at the cellular and multicellular levels with a distinct focus on intercellular forces and mechanical properties of whole biofilms. Here, motivated by recent advances in biofilm research and in other, seemingly unrelated fields of biology and physics, we propose a perspective that links the biofilm, a dynamic multicellular organism, with the physical processes occurring in the extracellular milieu. Using as an illustrative model organism, we specifically demonstrate how such a rationale explains biofilm architecture, differentiation, communication, and stress responses such as desiccation tolerance, metabolism, and physiology across multiple scales-from matrix proteins and polysaccharides to macroscopic wrinkles and water-filled channels.
现代分子微生物学通过详细研究信号转导和基因调控之间的相互作用,阐明了细菌生物膜的组织原则。一种互补的生物物理方法则在细胞和多细胞水平上研究中间尺度的依赖性,特别关注细胞间力和整个生物膜的力学特性。在这里,受生物膜研究以及生物学和物理学其他看似不相关领域的最新进展的启发,我们提出了一种观点,将生物膜这一动态多细胞生物体与细胞外环境中发生的物理过程联系起来。我们使用 作为一个说明性的模式生物,具体展示了这种基本原理如何解释生物膜结构、分化、通讯以及抗干燥耐受性、新陈代谢和生理学等应激反应,涉及多个尺度——从基质蛋白和多糖到宏观皱纹和充满水的通道。