Structural Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2217070120. doi: 10.1073/pnas.2217070120. Epub 2023 Apr 17.
Studying mechanisms of bacterial biofilm generation is of vital importance to understanding bacterial cell-cell communication, multicellular cohabitation principles, and the higher resilience of microorganisms in a biofilm against antibiotics. Biofilms of the nonpathogenic, gram-positive soil bacterium serve as a model system with biotechnological potential toward plant protection. Its major extracellular matrix protein components are TasA and TapA. The nature of TasA filaments has been of debate, and several forms, amyloidic and non-Thioflavin T-stainable have been observed. Here, we present the three-dimensional structure of TapA and uncover the mechanism of TapA-supported growth of nonamyloidic TasA filaments. By analytical ultracentrifugation and NMR, we demonstrate TapA-dependent acceleration of filament formation from solutions of folded TasA. Solid-state NMR revealed intercalation of the N-terminal TasA peptide segment into subsequent protomers to form a filament composed of β-sandwich subunits. The secondary structure around the intercalated N-terminal strand β0 is conserved between filamentous TasA and the Fim and Pap proteins, which form bacterial type I pili, demonstrating such construction principles in a gram-positive organism. Analogous to the chaperones of the chaperone-usher pathway, the role of TapA is in donating its N terminus to serve for TasA folding into an Ig domain-similar filament structure by donor-strand complementation. According to NMR and since the V-set Ig fold of TapA is already complete, its participation within a filament beyond initiation is unlikely. Intriguingly, the most conserved residues in TasA-like proteins (camelysines) of are located within the protomer interface.
研究细菌生物膜生成的机制对于理解细菌细胞间通讯、多细胞共生原理以及生物膜中微生物对抗生素更高的抗性至关重要。非致病性革兰氏阳性土壤细菌的生物膜作为一个具有生物技术潜力的模型系统,可以用于植物保护。其主要的细胞外基质蛋白成分是 TasA 和 TapA。TasA 纤维的性质一直存在争议,已经观察到几种形式,包括淀粉样和非硫黄素 T 染色。在这里,我们呈现了 TapA 的三维结构,并揭示了 TapA 支持非淀粉样 TasA 纤维生长的机制。通过分析超速离心和 NMR,我们证明了 TapA 依赖性加速 TasA 折叠溶液中纤维的形成。固态 NMR 揭示了 N 端 TasA 肽段插入随后的原体中,形成由β-夹层亚基组成的纤维。插入的 N 端链β0 周围的二级结构在丝状 TasA 与形成细菌 I 型菌毛的 Fim 和 Pap 蛋白之间是保守的,这表明在革兰氏阳性生物中存在这种构建原则。类似于伴侣 - usher 途径的伴侣,TapA 的作用是通过供体链互补将其 N 端捐赠给 TasA 折叠成类似 Ig 结构域的纤维结构。根据 NMR 结果,并且由于 TapA 的 V 集 Ig 折叠已经完成,它在纤维起始后的参与不太可能。有趣的是,TasA 样蛋白(camelysines)中最保守的残基位于原体界面内。