Lo Leo Yu-Ho, Qu Huamin
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):1116-1125. doi: 10.1109/TVCG.2024.3456333. Epub 2024 Nov 25.
In this study, we address the growing issue of misleading charts, a prevalent problem that undermines the integrity of information dissemination. Misleading charts can distort the viewer's perception of data, leading to misinterpretations and decisions based on false information. The development of effective automatic detection methods for misleading charts is an urgent field of research. The recent advancement of multimodal Large Language Models (LLMs) has introduced a promising direction for addressing this challenge. We explored the capabilities of these models in analyzing complex charts and assessing the impact of different prompting strategies on the models' analyses. We utilized a dataset of misleading charts collected from the internet by prior research and crafted nine distinct prompts, ranging from simple to complex, to test the ability of four different multimodal LLMs in detecting over 21 different chart issues. Through three experiments-from initial exploration to detailed analysis-we progressively gained insights into how to effectively prompt LLMs to identify misleading charts and developed strategies to address the scalability challenges encountered as we expanded our detection range from the initial five issues to 21 issues in the final experiment. Our findings reveal that multimodal LLMs possess a strong capability for chart comprehension and critical thinking in data interpretation. There is significant potential in employing multimodal LLMs to counter misleading information by supporting critical thinking and enhancing visualization literacy. This study demonstrates the applicability of LLMs in addressing the pressing concern of misleading charts.
在本研究中,我们探讨了误导性图表这一日益严重的问题,这是一个普遍存在的问题,破坏了信息传播的完整性。误导性图表会扭曲观众对数据的认知,导致基于错误信息的误解和决策。开发有效的误导性图表自动检测方法是一个紧迫的研究领域。多模态大语言模型(LLMs)的最新进展为应对这一挑战引入了一个有前景的方向。我们探索了这些模型在分析复杂图表以及评估不同提示策略对模型分析的影响方面的能力。我们利用了先前研究从互联网上收集的一个误导性图表数据集,并精心设计了九个不同的提示,从简单到复杂,以测试四种不同的多模态大语言模型检测超过21种不同图表问题的能力。通过三个实验——从初步探索到详细分析——我们逐步深入了解了如何有效地提示大语言模型识别误导性图表,并制定了策略来应对在我们将检测范围从最初的五个问题扩大到最终实验中的21个问题时遇到的可扩展性挑战。我们的研究结果表明,多模态大语言模型在数据解释中的图表理解和批判性思维方面具有很强的能力。通过支持批判性思维和提高可视化素养,利用多模态大语言模型来对抗误导性信息具有巨大潜力。这项研究证明了大语言模型在解决误导性图表这一紧迫问题上的适用性。