Suppr超能文献

基于 SURF 和 SVD 的医学图像完整性鲁棒零水印

A SURF and SVD-based robust zero-watermarking for medical image integrity.

机构信息

School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu, China.

Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia.

出版信息

PLoS One. 2024 Sep 12;19(9):e0307619. doi: 10.1371/journal.pone.0307619. eCollection 2024.

Abstract

Medical image security is paramount in the digital era but remains a significant challenge. This paper introduces an innovative zero-watermarking methodology tailored for medical imaging, ensuring robust protection without compromising image quality. We utilize Sped-up Robust features for high-precision feature extraction and singular value decomposition (SVD) to embed watermarks into the frequency domain, preserving the original image's integrity. Our methodology uniquely encodes watermarks in a non-intrusive manner, leveraging the robustness of the extracted features and the resilience of the SVD approach. The embedded watermark is imperceptible, maintaining the diagnostic value of medical images. Extensive experiments under various attacks, including Gaussian noise, JPEG compression, and geometric distortions, demonstrate the methodology's superior performance. The results reveal exceptional robustness, with high Normalized Correlation (NC) and Peak Signal-to-noise ratio (PSNR) values, outperforming existing techniques. Specifically, under Gaussian noise and rotation attacks, the watermark retrieved from the encrypted domain maintained an NC value close to 1.00, signifying near-perfect resilience. Even under severe attacks such as 30% cropping, the methodology exhibited a significantly higher NC compared to current state-of-the-art methods.

摘要

医学图像安全在数字时代至关重要,但仍然是一个重大挑战。本文介绍了一种针对医学成像的创新零水印方法,确保在不影响图像质量的情况下实现强大的保护。我们利用加速稳健特征进行高精度特征提取,并利用奇异值分解(SVD)将水印嵌入到频域中,保持原始图像的完整性。我们的方法采用独特的非侵入式方式对水印进行编码,利用提取特征的稳健性和 SVD 方法的弹性。嵌入的水印是不可察觉的,保持了医学图像的诊断价值。在各种攻击下进行了广泛的实验,包括高斯噪声、JPEG 压缩和几何变形,验证了该方法的卓越性能。结果表明,该方法具有出色的鲁棒性,归一化相关系数(NC)和峰值信噪比(PSNR)值较高,优于现有技术。具体来说,在高斯噪声和旋转攻击下,从加密域中提取的水印的 NC 值接近 1.00,表明具有近乎完美的弹性。即使在严重的攻击下,如 30%裁剪,该方法的 NC 值也明显高于当前最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b019/11392273/4113d0d7dd9b/pone.0307619.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验