Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.
Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
Mol Pharm. 2024 Nov 4;21(11):5703-5715. doi: 10.1021/acs.molpharmaceut.4c00707. Epub 2024 Sep 12.
Hot-melt extrusion (HME) is a widely used method for creating amorphous solid dispersions (ASDs) of poorly soluble drug substances, where the drug is molecularly dispersed in a solid polymer matrix. This study examines the impact of three different copovidone excipients, their reactive impurity levels, HME barrel temperature, and the distribution of colloidal silicon dioxide (SiO) on impurity levels, stability, and drug release of ASDs and their tablets. Initial peroxide levels were higher in Kollidon VA 64 (KVA64) and Plasdone S630 (PS630) compared to Plasdone S630 Ultra (PS630U), leading to greater oxidative degradation of the drug in fresh ASD tablets. However, stability testing (50 °C, closed container, 50 °C/30% RH, open conditions) showed lower oxidative degradation impurities in ASD tablets prepared at higher barrel temperatures, likely due to greater peroxide degradation. Plasdone S630 is suitable for ASDs with drugs prone to oxidative degradation, while standard purity grades may benefit drugs susceptible to free radical degradation, as they generate fewer free radicals post-HME. ASD tablets exhibited greater physical stability than milled extrudate samples, likely due to reduced exposure to stability conditions within the tablet matrix. Including SiO in the extrudate composition resulted in greater physical stability of the ASD system in the tablet; however, it negatively affected chemical stability, promoting greater oxidative degradation and hydroxylation of the drug substance. No impact of the distribution of SiO on drug release was observed. The study also confirmed the congruent release of copovidone, the drug substance, and Tween 80 using flow NMR coupled with in-line UV/vis. This research highlights the critical roles of peroxide levels and SiO in influencing the dissolution and physical and chemical stability of ASDs. The findings provide valuable insights for developing stable and effective pharmaceutical formulations, emphasizing the importance of controlling reactive impurities and excipient characteristics in ASD products prepared by using HME.
热熔挤出(HME)是一种广泛应用于制备难溶性药物无定形固体分散体(ASD)的方法,其中药物以分子形式分散在固体聚合物基质中。本研究考察了三种不同共聚维酮辅料及其反应性杂质水平、HME 机筒温度以及胶体二氧化硅(SiO)的分布对 ASD 及其片剂中杂质水平、稳定性和药物释放的影响。初始过氧化物水平在 Kollidon VA 64(KVA64)和 Plasdone S630(PS630)中高于 Plasdone S630 Ultra(PS630U),导致新鲜 ASD 片剂中药物的氧化降解程度更大。然而,稳定性测试(50°C,密闭容器,50°C/30%RH,开放条件)表明,在机筒温度较高的情况下制备的 ASD 片剂中氧化降解杂质较低,这可能是由于过氧化物降解更多。Plasdone S630 适用于易发生氧化降解的药物的 ASD,而标准纯度等级可能有利于易发生自由基降解的药物,因为它们在 HME 后产生的自由基更少。ASD 片剂表现出比研磨挤出物样品更高的物理稳定性,这可能是由于在片剂基质中减少了对稳定性条件的暴露。将 SiO 纳入挤出物组成会增加 ASD 系统在片剂中的物理稳定性;然而,它对化学稳定性产生负面影响,促进了药物物质更大的氧化降解和羟化。未观察到 SiO 分布对药物释放的影响。该研究还使用与在线 UV/vis 耦合的流动 NMR 证实了共聚维酮、药物物质和吐温 80 的一致释放。这项研究强调了过氧化物水平和 SiO 在影响 ASD 的溶解、物理和化学稳定性方面的关键作用。研究结果为开发稳定有效的药物制剂提供了有价值的见解,强调了在使用 HME 制备 ASD 产品时控制反应性杂质和赋形剂特性的重要性。