Suppr超能文献

慢集体变量、马尔可夫动力学和过渡态系综的光谱图

Spectral Map for Slow Collective Variables, Markovian Dynamics, and Transition State Ensembles.

作者信息

Rydzewski Jakub

机构信息

Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.

出版信息

J Chem Theory Comput. 2024 Sep 12;20(18):7775-84. doi: 10.1021/acs.jctc.4c00428.

Abstract

Understanding the behavior of complex molecular systems is a fundamental problem in physical chemistry. To describe the long-time dynamics of such systems, which is responsible for their most informative characteristics, we can identify a few slow collective variables (CVs) while treating the remaining fast variables as thermal noise. This enables us to simplify the dynamics and treat it as diffusion in a free-energy landscape spanned by slow CVs, effectively rendering the dynamics Markovian. Our recent statistical learning technique, spectral map [Rydzewski, J. , (22), 5216-5220], explores this strategy to learn slow CVs by maximizing a spectral gap of a transition matrix. In this work, we introduce several advancements into our framework, using a high-dimensional reversible folding process of a protein as an example. We implement an algorithm for coarse-graining Markov transition matrices to partition the reduced space of slow CVs kinetically and use it to define a transition state ensemble. We show that slow CVs learned by spectral map closely approach the Markovian limit for an overdamped diffusion. We demonstrate that coordinate-dependent diffusion coefficients only slightly affect the constructed free-energy landscapes. Finally, we present how spectral maps can be used to quantify the importance of features and compare slow CVs with structural descriptors commonly used in protein folding. Overall, we demonstrate that a single slow CV learned by spectral map can be used as a physical reaction coordinate to capture essential characteristics of protein folding.

摘要

理解复杂分子系统的行为是物理化学中的一个基本问题。为了描述此类系统的长时间动力学(这决定了它们最具信息量的特征),我们可以识别几个缓慢的集体变量(CVs),同时将其余快速变量视为热噪声。这使我们能够简化动力学,并将其视为在由缓慢CVs跨越的自由能景观中的扩散,从而有效地使动力学具有马尔可夫性。我们最近的统计学习技术——谱图[Rydzewski, J., (22), 5216 - 5220],探索了通过最大化转移矩阵的谱隙来学习缓慢CVs的策略。在这项工作中,我们以蛋白质的高维可逆折叠过程为例,对我们的框架进行了若干改进。我们实现了一种用于粗粒化马尔可夫转移矩阵的算法,以便从动力学角度对缓慢CVs的约化空间进行划分,并使用它来定义过渡态系综。我们表明,通过谱图学习到的缓慢CVs非常接近过阻尼扩散的马尔可夫极限。我们证明坐标依赖的扩散系数仅对构建的自由能景观有轻微影响。最后,我们展示了谱图如何用于量化特征的重要性,并将缓慢CVs与蛋白质折叠中常用的结构描述符进行比较。总体而言,我们证明了通过谱图学习到的单个缓慢CV可以用作物理反应坐标来捕捉蛋白质折叠的基本特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67e7/11428138/f095420df69c/ct4c00428_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验