Suppr超能文献

使用记忆对动态统计进行准确估计。

Accurate estimates of dynamical statistics using memory.

作者信息

Lorpaiboon Chatipat, Guo Spencer C, Strahan John, Weare Jonathan, Dinner Aaron R

机构信息

Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA.

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA.

出版信息

J Chem Phys. 2024 Feb 28;160(8). doi: 10.1063/5.0187145.

Abstract

Many chemical reactions and molecular processes occur on time scales that are significantly longer than those accessible by direct simulations. One successful approach to estimating dynamical statistics for such processes is to use many short time series of observations of the system to construct a Markov state model, which approximates the dynamics of the system as memoryless transitions between a set of discrete states. The dynamical Galerkin approximation (DGA) is a closely related framework for estimating dynamical statistics, such as committors and mean first passage times, by approximating solutions to their equations with a projection onto a basis. Because the projected dynamics are generally not memoryless, the Markov approximation can result in significant systematic errors. Inspired by quasi-Markov state models, which employ the generalized master equation to encode memory resulting from the projection, we reformulate DGA to account for memory and analyze its performance on two systems: a two-dimensional triple well and the AIB9 peptide. We demonstrate that our method is robust to the choice of basis and can decrease the time series length required to obtain accurate kinetics by an order of magnitude.

摘要

许多化学反应和分子过程发生的时间尺度,比直接模拟所能达到的时间尺度长得多。估计此类过程动态统计量的一种成功方法是,使用系统观测的许多短时间序列来构建马尔可夫状态模型,该模型将系统动力学近似为一组离散状态之间的无记忆跃迁。动态伽辽金近似(DGA)是一个密切相关的框架,用于通过将方程的解投影到一个基上进行近似,来估计诸如反应概率和平均首次通过时间等动态统计量。由于投影动力学通常不是无记忆的,马尔可夫近似可能会导致显著的系统误差。受准马尔可夫状态模型的启发,该模型采用广义主方程来编码投影产生的记忆,我们重新制定了DGA以考虑记忆,并分析其在两个系统上的性能:二维三阱和AIB9肽。我们证明,我们的方法对基的选择具有鲁棒性,并且可以将获得准确动力学所需的时间序列长度减少一个数量级。

相似文献

1
Accurate estimates of dynamical statistics using memory.
J Chem Phys. 2024 Feb 28;160(8). doi: 10.1063/5.0187145.
2
Galerkin approximation of dynamical quantities using trajectory data.
J Chem Phys. 2019 Jun 28;150(24):244111. doi: 10.1063/1.5063730.
3
Long-Time-Scale Predictions from Short-Trajectory Data: A Benchmark Analysis of the Trp-Cage Miniprotein.
J Chem Theory Comput. 2021 May 11;17(5):2948-2963. doi: 10.1021/acs.jctc.0c00933. Epub 2021 Apr 28.
4
On the advantages of exploiting memory in Markov state models for biomolecular dynamics.
J Chem Phys. 2020 Jul 7;153(1):014105. doi: 10.1063/5.0010787.
5
Dynamic distribution decomposition for single-cell snapshot time series identifies subpopulations and trajectories during iPSC reprogramming.
PLoS Comput Biol. 2020 Jan 10;16(1):e1007491. doi: 10.1371/journal.pcbi.1007491. eCollection 2020 Jan.
6
Long-time methods for molecular dynamics simulations: Markov State Models and Milestoning.
Prog Mol Biol Transl Sci. 2020;170:215-237. doi: 10.1016/bs.pmbts.2020.01.002. Epub 2020 Feb 5.
10
Order reduction of the chemical master equation via balanced realisation.
PLoS One. 2014 Aug 14;9(8):e103521. doi: 10.1371/journal.pone.0103521. eCollection 2014.

引用本文的文献

1
Spectral Map for Slow Collective Variables, Markovian Dynamics, and Transition State Ensembles.
J Chem Theory Comput. 2024 Sep 12;20(18):7775-84. doi: 10.1021/acs.jctc.4c00428.
2
BAD-NEUS: Rapidly converging trajectory stratification.
J Chem Phys. 2024 Aug 28;161(8). doi: 10.1063/5.0215975.
3
Dynamics of activation in the voltage-sensing domain of Ciona intestinalis phosphatase Ci-VSP.
Nat Commun. 2024 Feb 15;15(1):1408. doi: 10.1038/s41467-024-45514-6.

本文引用的文献

3
Predicting rare events using neural networks and short-trajectory data.
J Comput Phys. 2023 Sep 1;488. doi: 10.1016/j.jcp.2023.112152. Epub 2023 May 9.
4
Building insightful, memory-enriched models to capture long-time biochemical processes from short-time simulations.
Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2221048120. doi: 10.1073/pnas.2221048120. Epub 2023 Mar 15.
5
Likelihood-based non-Markovian models from molecular dynamics.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2117586119. doi: 10.1073/pnas.2117586119. Epub 2022 Mar 23.
6
Non-Markovian modeling of protein folding.
Proc Natl Acad Sci U S A. 2021 Aug 3;118(31). doi: 10.1073/pnas.2023856118.
7
Long-Time-Scale Predictions from Short-Trajectory Data: A Benchmark Analysis of the Trp-Cage Miniprotein.
J Chem Theory Comput. 2021 May 11;17(5):2948-2963. doi: 10.1021/acs.jctc.0c00933. Epub 2021 Apr 28.
8
Integrated Variational Approach to Conformational Dynamics: A Robust Strategy for Identifying Eigenfunctions of Dynamical Operators.
J Phys Chem B. 2020 Oct 22;124(42):9354-9364. doi: 10.1021/acs.jpcb.0c06477. Epub 2020 Oct 9.
9
Data-driven molecular modeling with the generalized Langevin equation.
J Comput Phys. 2020 Oct 1;418. doi: 10.1016/j.jcp.2020.109633. Epub 2020 Jun 3.
10
On the advantages of exploiting memory in Markov state models for biomolecular dynamics.
J Chem Phys. 2020 Jul 7;153(1):014105. doi: 10.1063/5.0010787.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验