Kleber Cecile E J, Karius Ramez, Naessens Lucas E, Van Toledo Coen O, A C van Osch Jochen, Boomsma Martijn F, Heemskerk Jan W T, van der Molen Aart J
Department of Clinical Technology, Faculty of Mechanical Engineering, Delft University of Technology, Delft, the Netherlands.
Department of Radiology, Isala Hospital, Zwolle, the Netherlands.
Eur J Radiol. 2024 Dec;181:111732. doi: 10.1016/j.ejrad.2024.111732. Epub 2024 Sep 7.
Metallic artefacts caused by metal implants, are a common problem in computed tomography (CT) imaging, degrading image quality and diagnostic accuracy. With advancements in artificial intelligence, novel deep learning (DL)-based metal artefact reduction (MAR) algorithms are entering clinical practice.
This systematic review provides an overview of the performance of the current supervised DL-based MAR algorithms for CT, focusing on three different domains: sinogram, image, and dual domain.
A literature search was conducted in PubMed, EMBASE, Web of Science, and Scopus. Outcomes were assessed using peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) or any other objective measure comparing MAR performance to uncorrected images.
After screening, fourteen studies were selected that compared DL-based MAR-algorithms with uncorrected images. MAR-algorithms were categorised into the three domains. Thirteen MAR-algorithms showed a higher PSNR and SSIM value compared to the uncorrected images and to non-DL MAR-algorithms. One study showed statistically significant better MAR performance on clinical data compared to the uncorrected images and non-DL MAR-algorithms based on Hounsfield unit calculations.
DL MAR-algorithms show promising results in reducing metal artefacts, but standardised methodologies are needed to evaluate DL-based MAR-algorithms on clinical data to improve comparability between algorithms.
Recent studies highlight the effectiveness of supervised Deep Learning-based MAR-algorithms in improving CT image quality by reducing metal artefacts in the sinogram, image and dual domain. A systematic review is needed to provide an overview of newly developed algorithms.
金属植入物引起的金属伪影是计算机断层扫描(CT)成像中的常见问题,会降低图像质量和诊断准确性。随着人工智能的发展,基于深度学习(DL)的新型金属伪影减少(MAR)算法正进入临床实践。
本系统评价概述了当前基于监督深度学习的CT MAR算法的性能,重点关注三个不同领域:正弦图、图像和双域。
在PubMed、EMBASE、Web of Science和Scopus中进行文献检索。使用峰值信噪比(PSNR)和结构相似性指数测量(SSIM)或任何其他将MAR性能与未校正图像进行比较的客观测量方法来评估结果。
筛选后,选择了14项将基于DL的MAR算法与未校正图像进行比较的研究。MAR算法被分为三个领域。与未校正图像和非DL MAR算法相比,13种MAR算法显示出更高的PSNR和SSIM值。一项研究表明,基于Hounsfield单位计算,与未校正图像和非DL MAR算法相比,在临床数据上的MAR性能具有统计学意义上的显著优势。
DL MAR算法在减少金属伪影方面显示出有前景的结果,但需要标准化方法来评估基于DL的MAR算法在临床数据上的性能,以提高算法之间的可比性。
最近的研究强调了基于监督深度学习的MAR算法通过减少正弦图、图像和双域中的金属伪影来提高CT图像质量的有效性。需要进行系统评价以概述新开发的算法。